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If Han’s conjecture is true for local algebras and an algebra Λ
admits a primitive strongly (co-)stratifying chain, then Han’s 
conjecture holds for Λ.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider finite dimensional associative algebras over a field k, which 
we call algebras for short. We study Morita contexts in relation with Han’s conjecture, 
more details are given below. The intention of this paper is to reduce the analysis of 
Han’s conjecture on an algebra to an easier algebra where Hochschild homology is more 
manageable.

A Morita context [8,31] is a matrix algebra built on two “diagonal” algebras A and B, 
two bimodules M and N and two bimodule maps α and β verifying natural conditions 
equivalent to associativity of the product of the matrix algebra - see Definition 2.1.

One of the main results that this paper relies on is that algebras with a distinguished 
idempotent are essentially the same that Morita contexts, see for instance [14,24]. For 
later use, we start Section 2 by recalling this well known fact in a categorical framework.

Stratifying ideals are defined by E. Cline, B. Parshall and L. Scott in [22] and further 
studied in [5,26,27]. We show that for Morita contexts the definition of a stratifying ideal 
of an algebra generated by an idempotent translates into the conditions TorAn (M, N) = 0
for n > 0 and β injective. See [36, Proposition 4.1].

Recollements are introduced by A. A. Beilinson, J. Bernstein and P. Deligne in [9]. 
Let ΛeΛ be a stratifying ideal of an algebra Λ, where e is an idempotent of Λ. This gives 
us a recollement of the unbounded derived category D(Λ) of complexes of Λ-modules 
relative to the unbounded derived categories D(Λ/ΛeΛ) and D(eΛe). See [22,26].

In Section 2 we also introduce strongly stratifying ideals generated by an idempotent. 
For Morita contexts, this corresponds to TorAn (M, N) = 0 for all n, and TorBn (N, M) = 0
for n > 0.

The Hochschild homology HH∗(Λ) of an algebra Λ (see [28], [40], [41]) is called finite
if HH∗(Λ) = 0 for ∗ > N for some N . A main purpose of this paper is to study 
under which circumstances the Hochschild homology of a Morita context being finite 
implies the Hochschild homology of its diagonal algebra is also finite. Our motivation 
is to attack Han’s conjecture [25], which states that if an algebra has finite Hochschild 
homology, then it should have finite global dimension. For results in this direction, see for 
instance [7,10–13,17,19,21,38,39]. Note that if Han’s conjecture is true, then the following 
dichotomy holds: either HH∗(Λ) is infinite or HH∗(Λ) = 0 for ∗ > 0. See [25].

Previous results by L. Angeleri Hügel, S. Koenig, Q. Liu and D. Yang in [4] provide a 
motivation for approaching Han’s conjecture through recollements. Roughly, the finite-
ness of the projective dimension is preserved for an idempotent which gives a stratifying 
ideal, through the recollement of the derived category. Moreover B. Keller in [33] and 
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Y. Han in [26] showed that in the same situation there is a long exact sequence relating 
the Hochschild homologies of the algebras involved.

In Section 3 we adjust and extend the Jacobi-Zariski long nearly exact sequence 
obtained in [18]. The additional hypothesis for fitting Theorem 4.2 of [18] is given in 
(3.4). This sequence links Hochschild homology of Λ to the relative one with respect to a 
subalgebra introduced by G. Hochschild in [29]. With this adjustement, we confirm our 
previous results in [18] and the earlier Jacobi-Zariski long exact sequence of A. Kaygun 
in [32].

Let Λ be an algebra with a distinguished idempotent e satisfying that ΛeΛ is a strongly 
stratifying ideal, and let f = 1 − e. Using the previously described tools, in Section 4
we obtain the key result of this paper, that is Theorem 4.6: if Λ has finite Hochschild 
homology, then the same holds for eΛe and fΛf . In Section 5, we prove our main result: 
Λ verifies Han’s conjecture if and only if its subalgebra eΛe × fΛf does.

We next consider algebras admitting a strongly stratifying chain, that is those algebras 
with an ordered complete system of orthogonal idempotents such that the successive 
quotients of the induced filtration by ideals are strongly stratifying in the corresponding 
algebra. We obtain the following interesting consequence of our key result Theorem 4.6. 
Let C be a class of algebras verifying Han’s conjecture which is closed by taking quotients. 
If an algebra Λ admits a strongly stratifying chain {e1, . . . , en} such that all the algebras 
eiΛei belong to C, then Han’s conjecture is true for Λ.

To avoid classes of algebras closed by taking quotients, we filter instead an algebra 
Λ by algebras fΛf where the f ’s are partial decreasing sums of a complete system of 
orthogonal idempotents {e1, . . . , en}. We consider strongly co-stratifying chains, that 
is the f ’s provide ideals which are strongly stratifying in the next algebra. We infer 
from Theorem 4.6 another main result: if an algebra Λ admits a strongly co-stratifying 
chain {e1, . . . , en} such that all the algebras eiΛei verify Han’s conjecture, then Han’s 
conjecture is true for Λ.

In particular if Han’s conjecture is true for local algebras and if an algebra admits a 
primitive strongly (co-)stratifying chain, then Han’s conjecture is true for this algebra.

Those algebras admitting a strongly stratifying or co-stratifying chain will be com-
pared with standardly stratified algebras (see for instance [1,2,37,42]) in a forthcoming 
paper.

In the last section, assuming ad-hoc projectivity conditions on the bimodules of a 
Morita context, we give patterns to produce examples.
Acknowledgments: We thank Octavio Mendoza for a comment which led to the definition 
of algebras admitting a strongly (co-)stratifying chain and ultimately to the mentioned 
result for these algebras.

2. Stratifying and strongly stratifying Morita contexts

Let k be a field. As mentioned, a finite dimensional associative k-algebra is called an 
algebra throughout this paper. We first recall the definition of Morita context and show 
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that it is the same that an algebra with a distinguished idempotent e. Then we specialize 
to the case where the two-sided ideal generated by e is stratifying, in order to obtain a 
stratifying Morita context.

As E.L. Green and C. Psaroudakis pointed out in [24], Morita contexts have been 
introduced by H. Bass [8] in 1962, and considered by P. M. Cohn [23] in 1996.

Definition 2.1. A Morita context is a matrix algebra 
(
A N
M B

)
α,β

where A and B are 

algebras, M and N are finite dimensional B−A and A −B-bimodules respectively, and 
α and β are A and B-bimodule maps respectively

α : N ⊗B M → A and β : M ⊗A N → B

which verify “associativity” conditions

α(n⊗m)n′ = nβ(m⊗ n′) and β(m⊗ n)m′ = mα(n⊗m′). (2.1)

The product of the Morita context is the matrix product using the above, namely

(
a n
m b

)(
a′ n′

m′ b′

)
=

(
aa′ + α(n⊗m′) an′ + nb′

ma′ + bm′ β(m⊗ n′) + bb′

)
.

This product is associative if and only if the “associativity” conditions on α and β hold.

For completeness, we recall the well known fact that Morita contexts are in bijection 
with k-categories with an ordered pair of objects and morphisms are k-vector spaces. 
Indeed, starting with a Morita context, the associated category has A (resp. B) as 
endomorphism algebra of the first (resp. second) object; morphisms from the first (resp. 
second) object to the second (resp. first) object are M (resp. N); finally compositions 
of those morphisms are given by α and β, their “associativity” conditions ensure that 
the composition is associative. Conversely, given a k-category with an ordered pair of 
objects, the Morita context has the algebras of endomorphisms of the objects on its 
diagonal. On the antidiagonal, the bimodules are the morphisms between the objects -
which are indeed bimodules over the previous algebras of endomorphisms. The maps α
and β are provided by the composition of the category.

Definition 2.2. The objects of the category Morita.Contexts are the Morita contexts. A 
morphism of Morita contexts

(
A N
M B

)
α,β

→
(

A′ N ′

M ′ B′

)
α′,β′

is a quadruple of maps
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(A ϕ→ A′, B
ψ→ B′,M

f→ M ′, N
g→ N ′),

where ϕ and ψ are algebra maps - they provide M ′ and N ′ with respective structures of 
B−A and A −B-bimodule. Moreover f and g are respectively B−A and A −B-bimodule 
maps. In addition, these maps verify the following conditions:

ϕ (α(n⊗m)) = α′ (g(n) ⊗ f(m)) and ψ (β(m⊗ n)) = β′ (f(m) ⊗ g(n)) .

The direct sum of the four maps of a morphism is an algebra map.
Note that a morphism between Morita contexts is equivalent to a functor between 

the corresponding categories with an ordered pair of objects, which respects the ordered 
pairs.

On the other hand the category of k-algebras with an idempotent is as follows.

Definition 2.3. The objects of the category Algebras.Idempotent are pairs (Λ, e) where Λ
is a k-algebra and e is a distinguished idempotent of Λ. A morphism ϕ : (Λ, e) → (Λ′, e′)
is a morphism of algebras ϕ : Λ → Λ′ such that ϕ(e) = e′.

The following result is well known.

Theorem 2.4. The categories Morita.Contexts and Algebras.Idempotent are isomorphic.

Proof. Let 
(

A N
M B

)
α,β

be a Morita context. The associated object in Algebras.Idem-

potent is the Morita context with distinguished idempotent 
(

1A 0
0 0

)
. Starting from a 

morphism of Morita contexts, that is a quadruple of appropriate maps, their direct sum 
clearly preserves the distinguished idempotents.

Conversely, let (Λ, e) be an object in Algebras.Idempotent and consider the idempotent 

f = 1 − e. Then 
(
eΛe eΛf
fΛe fΛf

)
α,β

is a Morita context where

α : eΛf ⊗fΛf fΛe → eΛe and β : fΛe⊗eΛe eΛf → fΛf

are given by the product of Λ. Observe that a morphism ϕ : (Λ, e) → (Λ′, e′) also verifies 
ϕ(f) = f ′, where f ′ = 1 − e′. Therefore, a morphism of algebras with distinguished 
idempotents provides a morphism of the corresponding Morita contexts. These functors 
are mutual inverses. �
Remark 2.5. The previous Theorem 2.4 generalizes to an algebra with a finite complete 
set of orthogonal idempotents (non necessarily primitive), see for instance [16,20].

In 1996 E. Cline, B. Parshall and L. Scott [22] considered a stratifying ideal generated 
by an idempotent of an algebra, we next recall its definition.
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Definition 2.6. [22] Let Λ be an algebra and e ∈ Λ an idempotent. The ideal ΛeΛ is 
stratifying if

1. ToreΛe
n (Λe, eΛ) = 0 for n > 0,

2. The surjection given by the product Λe ⊗eΛe eΛ → ΛeΛ is injective.

Remark 2.7. ([22], [26, Example 1, p.537]) Let Λ be an algebra and let D(Λ) denote the 
unbounded derived category of complexes of left Λ-modules. Let e ∈ Λ be an idempo-
tent such that ΛeΛ is a stratifying ideal. Then D(Λ) admits a recollement relative to 
D(Λ/ΛeΛ) and D(eΛe), which is interpreted as a short exact sequence of triangulated 
categories, as introduced by A. A. Beilinson, J. Bernstein and P. Deligne [9] in 1982.

In 2009 S. Koenig and H. Nagase [34, p. 888] showed that an idempotent e ∈ Λ gives a 
stratifying ideal if and only if the canonical surjection Λ → Λ/ΛeΛ induces isomorphisms

Ext∗Λ/ΛeΛ(X,Y ) → Ext∗Λ(X,Y )

for all Λ/ΛeΛ-modules X and Y .
It is worth noting that the above is precisely the definition of a strong idempotent 

ideal given in 1992 by M. Auslander, M.I. Platzeck and G. Todorov, see [6, p. 669]. They 
are not to be confused with “strongly stratifying” ideals that we will consider later.

The following definition will allow to consider stratifying ideals in the framework of 
Morita contexts.

Definition 2.8. A Morita context 
(
A N
M B

)
α,β

is stratifying if

1. TorAn (M, N) = 0 for n > 0,
2. β is injective.

Both stratifying definitions agree through the identification of Theorem 2.4 between 
algebras with distinguished idempotents and Morita contexts:

Theorem 2.9. [36, Proposition 4.1] Let Λ =
(

A N
M B

)
α,β

be a Morita context and let e

be the idempotent 
(

1 0
0 0

)
. The Morita context is stratifying if and only the ideal ΛeΛ

is stratifying.

Proof. Let Λ =
(

A N
M B

)
and e =

(
1 0
0 0

)
. We have

Λe = A⊕M eΛ = A⊕N
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respectively as right and left A-modules because eΛe = A. Therefore

ToreΛe
n (Λe, eΛ) = TorAn (A,A) ⊕ TorAn (A,N) ⊕ TorAn (M,A) ⊕ TorAn (M,N).

The three first direct summands on the right side of the equality are 0 for n > 0. This 
shows the equivalence on the Tor conditions.

Then note that

ΛeΛ =
(

A N
M Imβ

)
.

Moreover the morphism given by the product Λe ⊗eΛe eΛ → ΛeΛ decomposes diagonally 
as the direct sum of four morphisms

A⊗A A → A, A⊗A N → N, M ⊗A A → M and M ⊗A N → Imβ.

The first three are clearly isomorphisms, while the last one provides the equivalence on 
the injectivity conditions. �
Remark 2.10. From the proof of the previous Theorem 2.9 we have

Λ/ΛeΛ = B/Imβ.

We will consider strongly stratifying ideals as follows.

Definition 2.11. Let (Λ, e) be an algebra with a distinguished idempotent e, and let 
f = 1 − e. The ideal ΛeΛ is strongly stratifying if

1. ToreΛe
n (Λe, eΛ) = 0 for n > 0,

2. fΛe ⊗eΛe eΛf = 0,
3. TorfΛf

n (Λf, fΛ) = 0 for n > 0.

Remark 2.12.

• In Proposition 2.17 we will prove that if ΛeΛ is strongly stratifying, then ΛeΛ is 
indeed stratifying.

• The last requirement of Definition 2.11 for ΛeΛ to be a strongly stratifying ideal 
coincides with the first requirement of the definition for ΛfΛ to be a stratifying ideal 
(see Definition 2.6).

Example 2.13. We consider the example of [35, Example 4.4] and [5, Example 2.3]. Let 
Λ be the following bound quiver algebra
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e2

c

��

b

��

e1

a

���������������

e3

d

���������������

ba = 0, ad = 0, dc = 0.

As proved in [35], the idempotent e = e2 +e3 provides a stratifying ideal ΛeΛ. We assert 
that ΛeΛ is a strongly stratifying ideal.

The algebra A = eΛe is the Kronecker algebra 
e2

e3

cb .

Let f = e1 = 1 − e. Consider the right A-module M = fΛe and the left A-module 
N = eΛf . Their associated quiver representations are

Me2 = k{db}

Me3 = k{d}
1 0

e2N = k{a}

e3N = k{ca}
10

We assert that M ⊗A N = 0. Indeed,

db⊗ a = d⊗ ba = d⊗ 0 = 0, db⊗ ca = dbe2 ⊗ ca = db⊗ e2ca = db⊗ 0 = 0

d⊗ a = de3 ⊗ a = d⊗ e3a = d⊗ 0 = 0, d⊗ ca = dc⊗ a = 0 ⊗ a = 0.

Moreover B = fΛf = k, thus the last requirement of Definition 2.11 holds. For the 
sake of completeness we next check that TorAn (M, N) = 0 for n > 0, after [35]. Consider 
the projective left A-modules

P1 =

0

k{e3}

P0 =

k{e1}

k{b} ⊕ k{c}

(
0
1

)(
1
0

)

and the projective resolution of N

0 → P1 → P0 → N → 0

where the map P1 → P0 sends e3 to b. It is straightforward to verify that M ⊗A P1 =
k{d ⊗e3} and M⊗AP0 = k{d ⊗b}. Hence the complex computing TorAn (M, N) for n ≥ 0
is
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0 → M ⊗A P1 → M ⊗A P0 → 0

which is exact. Note that this gives another proof that M ⊗A N = 0.

Definition 2.14. A Morita context 
(
A N
M B

)
α,β

is strongly stratifying if

1. TorAn (M, N) = 0 for n > 0,
2. M ⊗A N = 0,
3. TorBn (N, M) = 0 for n > 0.

Remark 2.15. The morphism β of a strongly stratifying Morita context is β : 0 → B

which is of course injective. Therefore strongly stratifying Morita contexts are indeed 
stratifying.

Proposition 2.16. Let Λ be an algebra with a distinguished idempotent e, and let f = 1 −e. 

The associated Morita context 
(
eΛe eΛf
fΛe fΛf

)
α,β

is strongly stratifying if and only if the 

ideal ΛeΛ is strongly stratifying.

Proof. We have

ToreΛe
n (Λe, eΛ) =ToreΛe

n (eΛe, eΛe) ⊕ ToreΛe
n (eΛe, eΛf) ⊕

ToreΛe
n (fΛe, eΛe) ⊕ ToreΛe

n (fΛe, eΛf).

Of course eΛe is a projective left eΛe-module, it is also projective as a right eΛe-module. 
Thus for n > 0

ToreΛe
n (Λe, eΛ) = ToreΛe

n (fΛe, eΛf).

Moreover for n = 0 the second condition in both definitions is fΛe ⊗eΛe eΛf = 0.
Analogously, for n > 0 we have

TorfΛf
n (Λf, fΛ) = TorfΛf

n (eΛf, fΛe). �
Proposition 2.17. Let Λ be an algebra and e ∈ Λ an idempotent. If the ideal ΛeΛ is 
strongly stratifying, then it is stratifying.

Proof. By Proposition 2.16, the Morita context is strongly stratifying. Thus the Morita 
context is stratifying by Remark 2.15. Finally the ideal ΛeΛ is stratifying by Theo-
rem 2.9. �
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3. Jacobi-Zariski long nearly exact sequence and bounded extensions of algebras

We begin this section with a brief account of relative Hochschild homology with respect 
to a subalgebra, and not with respect to an ideal, as it is often considered. Next, we will 
provide the adjusted and extended version of the Jacobi-Zariski long near exact sequence 
of in [18], then we confirm the results of [19].

Let C ⊂ Λ be an extension of algebras, that is C is a subalgebra of Λ. The relative 
projective Λ-modules are direct summands of Λ ⊗C V , where V is any left C-module. 
Note that if C = k, the relative projectives are the usual Λ-projective modules.

Recall that a relative projective resolution of a Λ-module U requires the existence of 
a C-contracting homotopy, by [29, p. 250] it always exits. For a right Λ-module U ′, this 
leads to well defined vector spaces TorΛ|C

∗ (U ′, U).
Let Ce be the enveloping algebra C⊗kC

op of an algebra, and consider the extension of 
algebras Ce ⊂ Λe. The relative Hochschild homology H∗(Λ|C, X) of a Λ-bimodule X is 
defined as TorΛ

e|Ce

∗ (X, Λ). Note that G. Hochschild considered the extension C⊗Λop ⊂ Λe

in [29], but the Tor vector spaces obtained this way are the same, see for instance [17].
If C = k, relative Hochschild homology is Hochschild homology as defined in [28], 

which is denoted H∗(Λ, X). If X = Λ the usual notation is HH∗(Λ).

The setting of [18] is as follows.

Definition 3.1. A sequence of positively graded chain complexes of vector spaces

0 → C∗
ι→ D∗

κ→ E∗ → 0 (3.1)

with ι injective, κ surjective and κι = 0 is called short nearly exact. The middle quotient 
complex (Kerκ/Imι)∗ is called the gap complex.

Remark 3.2. Consider the double complex with columns at p = 0, 1 and 2 given by 
the short nearly exact sequence (3.1) after the usual change of signs. Recall that the 
horizontal maps go from right to left, since the double complex is of homological type.

By filtering the double complex by rows we have a spectral sequence. At page 1 the 
only possible non zero column is column 1, which is the gap complex (Kerκ/Imι)∗. 
Therefore the spectral sequence converges to H∗ (Kerκ/Imι).

Definition 3.3. A long nearly exact sequence is a complex of vector spaces

. . .
δ→ Um

I→ Vm
K→ Wm

δ→ Um−1
I→ Vm−1 → . . .

δ→ Un
I→ Vn

K→ Wn

ending at some n which is exact at Wm for all m > n and at all Um. The graded vector 
space (KerK/ImI)∗ is called the gap of the long nearly exact sequence.
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Next we adjust and we extend Theorem 4.2 of [18]. Part a) is new, while part b) 
requires the additional hypothesis (3.4) which is missing in [18]. It is worth noting that 
Jonathan Lindell wrote to us raising a question about the results in [18], just after we 
realized that Theorem 4.2 of [18] needs this hypothesis.

Theorem 3.4. Consider a short nearly exact sequence of positively graded chain complexes

0 → C∗
ι→ D∗

κ→ E∗ → 0. (3.2)

a) If H∗(Kerκ/Imι) = 0 for ∗ >> 0, then there is long exact sequence

. . .
δ→ Hm(C∗)

I→ Hm(D∗)
K→ Hm(E∗)

δ→ Hm−1(C∗)
I→ . . .

· · · δ→ Hn(C∗)
I→ Hn(D∗)

K→ Hn(E∗) (3.3)

ending at some n.
b) Let I and K be the maps induced in homology by ι and κ respectively. If

dimk(KerK/ImI)∗ = dimkH∗(Kerκ/Imι) for ∗ >> 0 (3.4)

then the sequence (3.3) exists and it is a long nearly exact sequence.

Proof. We now filter the double complex of Remark 3.2 by columns. At page 1 the 
vertical differentials are 0. The horizontal ones are

0 ← Hm(E∗)
K← Hm(D∗)

I← Hm(C∗) ← 0

At page 2 we have the following:

• column 0 is (CokerK)∗,
• column 1 is (KerK/ImI)∗,
• column 2 is (KerI)∗

and all the other columns are zero.
At page 2, the differentials are zero except possibly

(E2
0,q+1 = CokerK) d2←− (E2

2,q = KerI)

see for instance [40, p. 122]. Hence at page 3 we have that:

• column 0 is (Cokerd2)∗,
• column 1 is (KerK/ImI)∗,
• column 2 is (Kerd2)∗,
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all the other columns are zero and the differentials are zero. Hence these vector spaces 
remain the same in the following pages. Consequently the spectral sequence converges 
to

(Cokerd2)∗+1 ⊕ (KerK/ImI)∗ ⊕ (Kerd2)∗.

Both filtrations converge to the same limit, hence Remark 3.2 gives

dimk(Kerd2)∗ + dimk(KerK/ImI)∗ + dimk(Cokerd2)∗+1 =

dimkH∗(Kerκ/Imι). (3.5)

For a) we assume that H∗(Kerκ/Imι) = 0 for ∗ >> 0, hence

dimk(Kerd2)∗ + dimk(KerK/ImI)∗ + dimk(Cokerd2)∗+1 = 0 for ∗ >> 0.

In particular we have (KerK/ImI)∗ = 0 for ∗ >> 0. In other words the sequence is exact 
at Hm(D∗) for m >> 0.

Moreover, in high enough degrees we have

dimk(Kerd2)∗ = 0 = dimk(Cokerd2)∗+1

which means that d2 is invertible in high enough degrees.
Let us consider the canonical maps p : Hm(E∗) � CokerK and q : KerI ↪→ Hm−1(C∗). 

Define

δ = q
(
d−1
2

)
p.

We do have Kerδ = ImK and Imδ = KerI.
For b), the hypothesis (3.4) implies that d2 is invertible in high enough degrees. The 

previous construction provides δ, which gives a long nearly exact sequence which gap is 
H∗(Kerκ/Imι). �

In the following, we confirm the results in [18] after Theorem 3.4.
Let C ⊂ Λ be an extension of algebras. Let X be a Λ-bimodule. By [18, Theorem 3.3]

there is a fundamental nearly exact sequence for ∗ > 1

0 → Č∗(C,X) ι→ Č∗(Λ, X) κ→ Č∗(Λ|C,X) → 0 (3.6)

where the positively graded complexes are defined in [18, Section 2]. The homology of 
these complexes gives respectively H∗(C, X), H∗(Λ, X) and H∗(Λ|C, X).

We denote by I and K the maps in Hochschild homology induced by ι and κ respec-
tively. In this context, we reformulate below Theorem 4.4 of [18], which is actually a 
particular case of the above Theorem 3.4.
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Theorem 3.5. Let C ⊂ Λ be an extension of algebras and let X be a Λ-bimodule. With 
the above notations, we have

a) If H∗(Kerκ/Imι) = 0 for ∗ >> 0, then there is a Jacobi-Zariski sequence

. . .
δ→ Hm(C,X) I→ Hm(Λ, X) K→ Hm(Λ|C,X) δ→ Hm−1(C,X) I→ . . .

δ→ Hn(C,X) I→ Hn(Λ, X) K→ Hn(Λ|C,X) (JZ)

which is long exact and ends for some n.
b) If dimk(KerK/ImI)∗ = dimkH∗(Kerκ/Imι) for ∗ >> 0, then the sequence (JZ) exists 

and it is a long nearly exact sequence.

The name Jacobi-Zariski is given after [3, p. 61], [30], see also [18].

Next we approximate the homology of the gap H∗(Kerκ/Imι) of the fundamental 
sequence (3.6). This way we reconsider Theorem 5.1 of [18].

Theorem 3.6. With the above notations, if TorC∗ (Λ/C, (Λ/C)⊗Cn) = 0 for ∗ > 0 and 
for all n, then there is a spectral sequence converging to H∗(Kerκ/Imι) in large enough 
degrees. Its terms at page 1 are

E1
p,q = TorC

e

q (X, (Λ/C)⊗Cp) for p, q > 0

and 0 anywhere else.

Proof. Theorem 5.1 of [18] intends to approximate the gap of the Jacobi-Zariski sequence 
(JZ). The proof there focuses on the homology of the gap complex. This focus is now 
our aim.

Thus the proof of [18, p. 1645, Theorem 5.1] is relevant avoiding its first three lines. �
In the following, we confirm that the previous tools provide an alternative proof of 

the results of A. Kaygun in [32] as in [18, Theorem 6.2].

Theorem 3.7. Let C ⊂ Λ be an extension of k-algebras such that Λ/C is a flat C-
bimodule, and let X be a Λ-bimodule. There is a Jacobi-Zariski long exact sequence

. . .
δ→ Hm(C,X) I→ Hm(Λ, X) K→ Hm(Λ|C,X) δ→ Hm−1(C,X) I→ . . .

δ→ Hn(C,X) I→ Hn(Λ, X) K→ Hn(Λ|C,X)

ending at some n.

Proof. Λ/C is flat as a left and as a right C-module (see for instance the first part of 
the proof of [18, Lemma 6.1]), hence TorC∗ (Λ/C, (Λ/C)⊗Cn) = 0 for ∗ > 0 and for all n.
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Now by Theorem 3.6, there is a spectral sequence converging to the homology of the 
gap of the fundamental sequence (3.6) in large enough degrees. The first page of this 
spectral sequence is

E1
p,q = TorC

e

q (X, (Λ/C)⊗Cp) for p, q > 0

and 0 elsewhere. For p > 0 we have that the Ce-module (Λ/C)⊗Cp is flat, see for instance 
[18, Lemma 6.1]. If q > 0, then TorC

e

q (X, (Λ/C)⊗Cp) = 0. Consequently the first page of 
the spectral sequence is 0, so the homology of the gap of the fundamental sequence is 0. 
Then by Theorem 3.4 a), there exists a long Jacobi-Zariski exact sequence as stated. �

We recall from [18,19] that an extension of algebras C ⊂ Λ is left (respectively right) 
bounded if

• Λ/C is projective as a left (respectively right) C-module,
• Λ/C is tensor nilpotent as a C-bimodule,
• Λ/C is of finite projective dimension as a C-bimodule.

We confirm now [18, Theorem 6.5] - see also [19, Theorem 2.9], by means of the 
previous results. We underline that we consider an extension of algebras C ⊂ Λ which is 
not necessarily split, namely it may not exist a two sided ideal I of Λ such that Λ = C⊕I.

Theorem 3.8. With the above notations, assume that the extension is left or right 
bounded. Then there is a Jacobi-Zariski long exact sequence

. . .
δ→ Hm(C,X) I→ Hm(Λ, X) K→ Hm(Λ|C,X) δ→ Hm−1(C,X) I→ . . .

δ→ Hn(C,X) I→ Hn(Λ, X) K→ Hn(Λ|C,X)

ending at some n.

Proof. We have that TorC∗ (Λ/C, (Λ/C)⊗Cn) = 0 for ∗ > 0 and for all n. Hence by 
Theorem 3.6 there is a spectral sequence converging to H∗(Kerκ/Imι) in large enough 
degrees. At page 1 we have E1

p,q = TorC
e

q (X, (Λ/C)⊗Cp) for p, q > 0 and 0 otherwise. Let 
u be the projective dimension of the C-bimodule Λ/C. Then (Λ/C)⊗Cp is of projective 
dimension at most pu, see [15, Chapter IX, Proposition 2.6].

Let v be such that (Λ/C)⊗Cv = 0. Note that if p ≥ v or q > pu, then E1
p,q = 0. 

Therefore if p + q ≥ v(u + 1), then E1
p,q = 0. That is the terms of the spectral sequence 

vanish at page 1 for high enough total degrees. Hence H∗(Kerκ/Imι) = 0 for ∗ >> 0. 
Then Theorem 3.4 part a) provides the Jacobi-Zariski long exact sequence. �
Remark 3.9. Consider a Morita context Λ =

(
A N
M B

)
α,β

and let C = A × B be its 

diagonal subalgebra.
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• It may happen that (Λ, 
(

1 0
0 0

)
) is strongly stratifying but C ⊂ Λ is not a bounded 

extension. Nevertheless in this case Λ/C is tensor nilpotent, as we will see in the 
next section.

• If the extension C ⊂ Λ is bounded, then M ⊗A N = 0 if and only if the Morita 
context is strongly stratifying.

4. Hochschild homology of strongly stratifying Morita contexts

The main purpose of this section is to prove that if a strongly stratifying Morita 
context Λ =

(
A N
M B

)
α,β

has finite Hochschild homology, then the same holds for its 
diagonal subalgebra C = A ×B and consequently for each diagonal algebra A and B.

We first recall some easy to show facts that we will use.

(F1) A left C-module X is the direct sum of a left A-module aX and a left B-module 

bX, where aX = (1, 0)X and bX = (0, 1)X.
Conversely, if aX and bX are left A and B-modules respectively, then aX ⊕ bX is 
a left C-module. Note that B and A annihilate respectively aX, and bX = 0.

(F2) In particular a left A-module U becomes a left A ×B-module through U ⊕ 0, with 
BU = 0.

(F3) Let U (resp. V ) be a right A (resp. left B)-module, viewed as a right (resp. left) 
C-module. We have U ⊗C V = 0.

(F4) Let Y (resp. X) be a right (resp. left) C-module and Y = Ya ⊕ Yb (resp. X =
aX ⊕ bX) be the decomposition as above. We have

TorC∗ (Ya ⊕ Yb, aX ⊕ bX) = TorA∗ (Ya, aX) ⊕ TorB∗ (Yb, bX).

Indeed a left C-projective resolution of aX ⊕ bX is given by the direct sum of a 
left A-projective resolution of aX and a left B-projective resolution of bX. Using 
(F3) we infer the result.

(F5) As C = A ×B,

Ce = Ae × (A⊗Bop) × (B ⊗Aop) ×Be.

Let X be a C-bimodule. We have

X =aXa ⊕ aXb ⊕ bXa ⊕ bXb

where aXa, aXb, bXa and bXb are respectively an A-bimodule, an A −B-bimodule, 
a B −A-bimodule and a B-bimodule.

(F6) Let Y and X be C-bimodules decomposed as above. After (F4) we have

TorC
e

∗ (Y,X) =TorA
e

∗ (aYa, aXa) ⊕ TorA⊗Bop

∗ (bYa, aXb)⊕
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TorB⊗Aop

∗ (aYb, bXa) ⊕ TorB
e

∗ (bYb, bXb).

(F7) As mentioned the B−A-bimodule M is viewed as a C-bimodule by extending the 
actions by zero, that is AM = MB = 0. Analogously, N is a C-bimodule. This 
way

Λ/C = M ⊕N

as C-bimodules.

Next we show that the hypotheses of Theorem 3.6 hold for a strongly stratifying 
Morita context.

Proposition 4.1. Let Λ be a strongly stratifying Morita context 
(

A N
M B

)
α,β

, and let 

C = A ×B as a subalgebra of the Morita context.
We have that TorC∗ (Λ/C, (Λ/C)⊗Cn) = 0 for ∗ > 0 and for all n.

Proof. As noted in (F7), Λ/C = M ⊕N as C-bimodules. To compute

(M ⊕N)⊗C2

note that M ⊗C M = 0 = N ⊗C N by (F3). Analogously, N ⊗C M = N ⊗B M and 
M ⊗C N = M ⊗A N ; the latter is 0 since the Morita context is strongly stratifying. 
Finally

(M ⊕N)⊗C2 = N ⊗B M. (4.1)

Moreover

(M ⊕N)⊗C3 = M ⊗A N ⊗B M = 0. (4.2)

For n ≥ 3, we infer (M ⊕N)⊗Cn = 0 and TorC∗ (Λ/C, (Λ/C)⊗Cn) = 0.
For n = 2 we have

TorC∗ (M ⊕N, (M ⊕N)⊗C2) = TorC∗ (M ⊕N,N ⊗B M)

= TorA∗ (M,N ⊗B M)
	= TorB∗ (M ⊗A N,M)

= 0

The equality 
	= is ensured by [15, Theorem 2.8, p.167] in case the following takes place

TorAn (M,N) = 0 = TorBn (N,M) for n > 0.
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Indeed, this holds since the Morita context is strongly stratifying.
For n = 1 we have

TorC∗ (Λ/C, (Λ/C)) = TorC∗ (M ⊕N,M ⊕N)

= TorA∗ (M,N) ⊕ TorB∗ (N,M)

according to (F4). Now TorA∗ (M, N) = 0 for ∗ > 0 since the Morita context is stratifying. 
Moreover TorB∗ (N, M) = 0 for ∗ > 0 since it is strongly stratifying. �

We will now show that the terms at the first page of the spectral sequence of Theo-
rem 3.6 for X = Λ vanish.

Lemma 4.2. Let Λ =
(
A N
M B

)
α,β

be a strongly stratifying Morita context. For n ≥ 0

TorA⊗Bop

n (M,N) = 0 = TorB⊗Aop

n (N,M).

Proof. We make use of the “associativity formula” of H. Cartan and S. Eilenberg [15, p. 
347, (5a)], namely there is a spectral sequence

Hq(B,TorAp (M,N)) ⇒ TorA⊗Bop

n (M,N).

Since the Morita context is strongly stratifying, TorAp (M, N) = 0 for p ≥ 0. Hence 

Hq(B, TorAp (M, N)) = 0 for all p and q, and TorA⊗Bop

n (M, N) = 0 for all n.
Given an algebra D, a right D-module X and a left D-module Y , it is well known 

that for all n

TorDn (X,Y ) = TorD
op

n (Y,X).

Hence

TorB⊗Aop

q (N,M) = TorA⊗Bop

q (M,N) = 0. �
Proposition 4.3. Let Λ be a strongly stratifying Morita context 

(
A N
M B

)
α,β

, and let 

C = A ×B. We have

TorC
e

q (Λ, (Λ/C)⊗Cp) = 0 for p, q > 0.

Proof. By (4.2) we have (Λ/C)⊗Cp = 0 for p ≥ 3, thus TorC
e

q (Λ, (Λ/C)⊗Cp) = 0 for 
p ≥ 3.

The decomposition of (F5) of Λ as a C-bimodule is

Λ = A⊕N ⊕M ⊕B.
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For p = 1, according to (F6) we have

TorC
e

q (A⊕N ⊕M ⊕B, M ⊕N) = TorB⊗Aop

q (N,M) ⊕ TorA⊗Bop

q (M,N).

Both summands vanish by the previous Lemma 4.2.
For p = 2, we know by (4.1) that (M ⊕N)⊗C2 = N ⊗B M . Hence

TorC
e

q (A⊕N ⊕M ⊕B, (M ⊕N)⊗C2) = TorA
e

q (A,N ⊗B M).

We show next that the hypotheses of [15, p.347 (4a)] hold: firstly note that TorAn (A, N) =
0 for n > 0. Secondly, since the Morita context is strongly stratifying, TorBn (N, M) = 0
for n > 0. Therefore there is an isomorphism

TorA
e

q (A,N ⊗B M) � TorA
op⊗B

q (A⊗A N,M).

The latter is TorA
op⊗B

q (N, M), which is zero by the previous Lemma 4.2. �
Theorem 4.4. Let Λ be an algebra with a distinguished idempotent e, such that ΛeΛ is a 
strongly stratifying ideal and let C = eΛe × fΛf , where f = 1 − e.

There exists a Jacobi-Zariski long exact sequence

. . .
δ→ Hm(C,Λ) I→ Hm(Λ,Λ) K→ Hm(Λ|C,Λ) δ→ Hm−1(C,Λ) I→ . . .

δ→ Hn(C,Λ) I→ Hn(Λ,Λ) K→ Hn(Λ|C,Λ)

ending at some n.

Proof. Consider the corresponding strongly stratifying Morita context

Λ =
(

A N
M B

)
α,β

where A = eΛe and B = fΛf , thus C = A × B. We will show 

that we can use part a) of Theorem 3.5, that is we assert H∗(Kerκ/Imι) = 0 for 
∗ >> 0. Indeed, the spectral sequence of Theorem 3.6 is available if we prove that 
TorC∗ (Λ/C, (Λ/C)⊗Cn) = 0 for ∗ > 0 and for all n. This follows from Proposition 4.1.

Moreover the first page of this spectral sequence is

E1
p,q = TorC

e

q (Λ, (Λ/C)⊗Cp) for p, q > 0

and 0 anywhere else, see Theorem 3.6 for X = Λ.
This first page vanishes, due to Proposition 4.3. We have proved that

H∗(Kerκ/Imι) = 0 for ∗ >> 0

and of Theorem 3.5 a) provides the existence of the Jacobi-Zariski long exact se-
quence. �
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Lemma 4.5. In the situation of Theorem 4.4, let X be a Λ-bimodule. We have that 
Hm(Λ|C, X) = 0 for m ≥ 3.

Proof. By [18, Corollary 2.4] we have that Hm(Λ|C, X) is the homology of the following 
chain complex

· · · → X ⊗Ce (Λ/C)⊗Cm → · · · → X ⊗Ce Λ/C → XC → 0

where XC = Λ ⊗Ce C = X/〈cx − xc〉 = H0(C, X). On the other hand, (4.2) ensures that 
(Λ/C)⊗Cm = 0 for m ≥ 3. �
Theorem 4.6. Let Λ be an algebra with a distinguished idempotent e such that ΛeΛ is a 
strongly stratifying ideal, and let f = 1 − e. If HH∗(Λ) is finite, then HH∗(eΛe) and 
HH∗(fΛf) are finite.

Proof. Consider the corresponding strongly stratifying Morita context

Λ =
(

A N
M B

)
α,β

where A = eΛe and B = fΛf and C = A × B. The Lemma 4.5 and 

the Jacobi-Zariski long exact sequence of Theorem 4.4 provide H∗(C, Λ) = 0 for ∗ >> 0. 
Moreover

TorC
e

∗ (C,Λ) = TorC
e

∗ (A⊕B, A⊕N ⊕M ⊕B).

By (F6) the latter is

TorA
e
(A,A) ⊕ TorB

e
(B,B) = HH∗(A) ⊕HH∗(B).

We infer that HH∗(A) and HH∗(B) are finite. �
5. Han’s conjecture

We recall Han’s conjecture [25] for an algebra Λ: if HH∗(Λ) is finite, then Λ has finite 
global dimension.

Theorem 5.1. Let Λ be an algebra with a distinguished idempotent e such that ΛeΛ is a 
strongly stratifying ideal, and let f = 1 − e. The algebra Λ verifies Han’s conjecture if 
and only if eΛe × fΛf does.

Proof. Consider the corresponding strongly stratifying Morita context

Λ =
(
A N
M B

)
,

α,β
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where A = eΛe and B = fΛf . Assume that A × B satisfies Han’s conjecture and let 
us prove that this is also the case for Λ. So suppose HH∗(Λ) is finite. By Theorem 4.6, 
we have that HH∗(A) and HH∗(B) are finite. It is well known that HH∗(A × B) =
HH∗(A) ⊕HH∗(B), then H∗(A ×B) is finite and thus A ×B has finite global dimension. 
Hence A and B have finite global dimension.

Note that by Remark 2.15 we have β : 0 → B, then Imβ = 0 and thus B/Imβ = B. 
Therefore Λ/ΛeΛ = B, see Remark 2.10. Since the ideal ΛeΛ is strongly stratifying, it 
is stratifying. Hence there is a recollement of D(Λ) relative to D(Λ/ΛeΛ) and D(eΛe), 
that is relative to D(B) and D(A).

According to L. Angeleri Hügel, S. Koenig, Q. Liu and D. Yang in [4, Theorem I, 
p. 17] (see also [26, Proposition 4, p. 541]), since A and B have finite global dimension, 
Λ has finite global dimension.

Next we show the other implication. Assume that Λ satisfies Han’s conjecture, our 
aim is to show that A × B also does. Let’s suppose that HH∗(A × B) is finite. Since 
HH∗(A ×B) = HH∗(A) ⊕HH∗(B) we infer that HH∗(A) and HH∗(B) are finite.

We have that ΛeΛ is a strongly stratifying ideal, hence it is stratifying and there is 
a recollement. According to [26, Corollary 2, p. 543] after B. Keller [33], there is a long 
exact sequence in Hochschild homology

· · · → HHn+1(Λ/ΛeΛ) → HHn(eΛe) → HHn(Λ) → HHn(Λ/ΛeΛ) → · · ·

that is for the Morita context

· · · → HHn+1(B) → HHn(A) → HHn(Λ) → HHn(B) → · · · .

We infer that HH∗(Λ) is finite. Since Λ verifies Han’s conjecture, Λ is of finite global 
dimension.

Using again the above cited result in [4,26] we infer that A and B, and thus A × B, 
have finite global dimension. �

Theorem 5.1 will also be useful for considering algebras filtered by ideals which suc-
cessive quotients provide strongly stratifying ideals. The following result shows that 
Definition 5.3 below makes sense.

Lemma 5.2. Let Λ be an algebra and let u, v ∈ Λ be orthogonal idempotents. We have

Λ(u + v)Λ
ΛuΛ = Λ

ΛuΛv
Λ

ΛuΛ

where v is the class of v in Λ/ΛuΛ.

Proof. First note that since u and v are orthogonal idempotents we have

Λ(u + v)Λ = ΛuΛ + ΛvΛ,
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consequently

Λ(u + v)Λ
ΛuΛ = ΛuΛ + ΛvΛ

ΛuΛ = ΛvΛ
ΛuΛ ∩ ΛvΛ ·

Next consider the composition ΛvΛ ↪→ Λ � Λ/ΛuΛ. Its image is Λ
ΛuΛv

Λ
ΛuΛ and its kernel 

is ΛuΛ ∩ ΛvΛ. �
Definition 5.3. Let Λ be an algebra. A strongly stratifying n-chain is an ordered complete 
system of orthogonal idempotents {e1, . . . , en} of Λ such that the filtration by ideals

0 ⊂ Λe1Λ ⊂ Λ(e1 + e2)Λ ⊂ · · · ⊂ Λ(e1 + e2 + · · · + en−1)Λ ⊂ Λ

verifies that for 1 ≤ i ≤ n the quotient Λ(e1 + · · · + ei)Λ/Λ(e1 + · · · + ei−1)Λ is a 
strongly stratifying ideal of Λ/Λ(e1 + · · · + ei−1)Λ.

Remark 5.4.

• The bound quiver algebra Λ of Example 2.13

e2

c

��

b

��

e1

a

���������������

e3

d

���������������

ba = 0, ad = 0, dc = 0.

admits a strongly stratifying 2-chain {e2 + e3, e1}.
• For 1 ≤ i ≤ n, let Λi = Λ/Λ(e1 + · · · + ei)Λ. According to Lemma 5.2

Λ(e1 + · · · + ei)Λ
Λ(e1 + · · · + ei−1)Λ

= Λi−1eiΛi−1

where ei denotes the class of ei in Λi−1.

Definition 5.5. Let C be a class of algebras. A C-strongly stratifying n-chain of an algebra 
Λ is a strongly stratifying n-chain {e1, . . . , en} of Λ such that for 1 ≤ i ≤ n the algebra 
eiΛei belongs to C.

We will need the following lemma.

Lemma 5.6. Let C be a class of algebras which is closed by taking quotients. Let Λ be an 
algebra admitting a C-strongly stratifying n-chain {e1, . . . , en} for n > 1. The algebra 
Λ/Λe1Λ admits a C-strongly stratifying n − 1-chain {e2, e3, . . . , en}.
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Proof. We have the following quotient filtration of Λ/Λe1Λ

0 ⊂ Λ(e1 + e2)Λ
Λe1Λ

⊂ · · · ⊂ Λ(e1 + e2 + · · · + en−1)Λ
Λe1Λ

⊂ Λ
Λe1Λ

·

Using Lemma 5.2, the ideals of this filtration are as follows

Λ(e1 + · · · + ei)Λ
Λe1Λ

= Λ(e2 + · · · + ei)Λ
Λe1Λ ∩ Λ(e2 + · · · + ei)Λ

= Λ
Λe1Λ

(e2 + · · · + ei)
Λ

Λe1Λ
·

Hence the quotient filtration is indeed the one corresponding to the complete system of 
orthogonal idempotents {e2, . . . , ei} of Λ/Λe1Λ, namely

0 ⊂ Λ
Λe1Λ

e2
Λ

Λe1Λ
⊂ · · · ⊂ Λ

Λe1Λ
(e2 + · · · + en) Λ

Λe1Λ
⊂ Λ

Λe1Λ
·

To verify that the successive quotients of this filtration of Λ/Λe1Λ are strongly stratifying 
in the corresponding quotient of Λ/Λe1Λ, note that

Λ(e1 + · · · + ei)Λ/Λe1Λ
Λ(e1 + · · · + ei−1)Λ/Λe1Λ

= Λ(e1 + · · · + ei)Λ
Λ(e1 + · · · + ei−1)Λ

and

Λ/Λe1Λ
Λ(e1 + · · · + ei−1)Λ/Λe1Λ

= Λ
Λ(e1 + · · · + ei−1)Λ

·

Finally observe that

ei
Λ

Λe1Λ
ei = eiΛei

Λe1Λ ∩ eiΛei
.

Since eiΛei is in C which is closed by taking quotients, we infer that ei Λ
Λe1Λei also belongs 

to C. This way {e2, . . . , en} is a C-strongly stratifying n − 1-chain of Λ/Λe1Λ. �
Theorem 5.7. Let C be a class of algebras which is closed by taking quotients, and assume 
that Han’s conjecture holds for all algebras in C. Let Λ be an algebra which admits a C-
strongly stratifying n-chain for some n > 0. Then Λ verifies Han’s conjecture.

Proof. By induction, let Λ be an algebra admitting a C-strongly stratifying n-chain 
{e1, . . . , en}. If n = 1, then e1 = 1 and the algebra Λ = 1Λ1 is in C. By hypothesis, Λ
verifies Han’s conjecture.

Let n > 1 and consider the algebra Λ/Λe1Λ which admits a C-strongly stratifying 
n − 1-chain by Lemma 5.6. Hence Han’s conjecture holds for it.

The ideal Λe1Λ is strongly stratifying in Λ. By Theorem 5.1, Han’s conjecture holds 
for Λ if and only if it holds for e1Λe1×(1 −e1)Λ(1 −e1). To verify the latter, suppose that 
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HH∗(e1Λe1×(1 −e1)Λ(1 −e1)) is finite. So HH∗(e1Λe1) is finite. But e1Λe1 belongs to C, 
thus by hypothesis it verifies Han’s conjecture. Then e1Λe1 has finite global dimension.

On the other hand we also have that HH∗((1 − e1)Λ(1 − e1)) is finite. Consider the 
Morita context given by e1. By Remark 2.10

Λ
Λe1Λ

= (1 − e1)Λ(1 − e1)
Imβ

·

Since Λe1Λ is strongly stratifying, we have that β = 0. Consequently

Λ/Λe1Λ = (1 − e1)Λ(1 − e1)

and HH∗(Λ/Λe1Λ) is finite. Han’s conjecture holds for Λ/Λe1Λ by the inductive hypoth-
esis - see above. Then Λ/Λe1Λ = (1 − e1)Λ(1 − e1) has finite global dimension.

We have established before that e1Λe1 has finite global dimension. We infer that 
e1Λe1 × (1 − e1)Λ(1 − e1) has finite global dimension, that is this algebra verifies Han’s 
conjecture as needed. �
Corollary 5.8. Assume that Han’s conjecture holds for local algebras. If an algebra Λ
admits a strongly stratifying chain {e1, . . . , en} with ei primitive for all i, then Han’s 
conjecture is true for Λ.

In order to avoid classes of algebras closed by taking quotients, instead of filtering by 
ideals of an algebra Λ, below we filter Λ by algebras fΛf , where f is a partial sum of a 
complete system of orthogonal idempotents.

The following lemma can be easily proved.

Lemma 5.9. Let Λ be an algebra with an ordered complete set of orthogonal idempotents 
{e1, . . . , en}. Consider the following idempotents

f0 = e1 + · · · + en, f1 = e2 + · · · + en, . . . , fi = ei+1 + · · · + en, . . . , fn−1 = en.

For 0 ≤ i ≤ n − 1, consider the algebra fiΛfi with unit fi.

• For j > i we have ej = fiej = ejfi = fiejfi, therefore ej ∈ fiΛfi and ej(fiΛfi)ej =
ejΛej,

• fiΛfi has a complete set of orthogonal idempotents {ei+1, . . . , en} and fi+1 = fi −
ei+1,

• For j ≥ i we have fifj = fjfi = fj, therefore fjΛfj = fj(fiΛfi)fj,
• 0 ⊂ fn−1Λfn−1 ⊂ . . . ⊂ fiΛfi ⊂ . . . ⊂ f1Λf1 ⊂ f0Λf0 = Λ.

We keep the notations of Lemma 5.9 in the sequel.
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Definition 5.10. Let Λ be an algebra. A strongly co-stratifying n-chain of Λ is an ordered 
complete set of orthogonal idempotents {e1, . . . , en} ⊂ Λ such that the ideals provided 
by the following idempotents

f1 ∈ Λ, f2 ∈ f1Λf1, . . . , fi+1 ∈ fiΛfi, . . . , fn−1 ∈ fn−2Λfn−2

are strongly stratifying in their respective algebras.

Example 5.11. The bound quiver algebra Λ of Example 2.13

e2

c

��

b

��

e1

a

���������������

e3

d

���������������

ba = 0, ad = 0, dc = 0.

admits a strongly co-stratifying 3-chain {e1, e2, e3}. Indeed, consider the filtration

0 ⊂ e3Λe3 ⊂ (e2 + e3)Λ(e2 + e3) ⊂ Λ.

We know that the idempotent e2+e3 provides a strongly stratifying ideal in Λ. Moreover 
e3 gives trivially a strongly stratifying ideal of the Kronecker algebra (e2 + e3)Λ(e2 + e3)

since the corresponding Morita context is 
(
k k ⊕ k
0 k

)
.

Definition 5.12. An H-strongly co-stratifying n-chain of Λ is a strongly co-stratifying 
n-chain {e1, . . . , en} such that eiΛei verifies Han’s conjecture for all i.

Theorem 5.13. Let Λ be an algebra which admits an H-strongly co-stratifying n-chain. 
Then Λ verifies Han’s conjecture.

Proof. By induction, let Λ be an algebra which admits an H-strongly co-stratifying 
n-chain {e1, . . . , en}. If n = 1, then e1 = 1 and Λ = e1Λe1 verifies Han’s conjecture.

For n > 1, recall that f1 = e2 + · · ·+ en = 1 − e1. Since Λf1Λ is a strongly stratifying 
ideal of Λ, by Theorem 5.1 we have that Han’s conjecture holds for Λ if and only if 
it holds for f1Λf1 × e1Λe1. To verify the latter, suppose that HH∗(f1Λf1 × e1Λe1) is 
finite, then HH∗(f1Λf1) and HH∗(e1Λe1) are finite. We have that e1Λe1 verifies Han’s 
conjecture thus e1Λe1 is of finite global dimension.

On the other hand we assert that f1Λf1 admits a H-strongly co-stratifying (n −
1)-chain {e2, . . . , en}. First by Lemma 5.9, for j ≥ 2 we have fj(f1Λf1)fj = fjΛfj . 
Thus the ideal provided by fj+1 in fj(f1Λf1)fj is strongly stratifying since {e1, . . . , en}
is a strongly co-stratifying n-chain of Λ. Second, by Lemma 5.9 for j ≥ 2, we have 
ej(f1Λf1)ej = ejΛej and the latter verifies Han’s conjecture.



144 C. Cibils et al. / Journal of Algebra 639 (2024) 120–149
Therefore the inductive hypothesis ensures that f1Λf1 verifies Han’s conjecture, hence 
f1Λf1 is of finite global dimension. We infer that f1Λf1×e1Λe1 is of finite global dimen-
sion, that is Han’s conjecture is true for f1Λf1 × e1Λe1. �
Corollary 5.14. Assume that Han’s conjecture holds for local algebras. If an algebra Λ
admits a co-stratifying chain consisting of primitive idempotents, then Han’s conjecture 
is true for Λ.

Remark 5.15. As quoted in the Introduction, a comparison between algebras admitting a 
strongly stratifying or co-stratifying chain with algebras which are standardly stratified 
will be considered in a forthcoming paper. For the convenience of the reader, we recall 
the definition of standardly stratified algebras (see for instance [1,2,37,42]).

With the same notations as in Lemma 5.9, recall that fi = ei+1 + · · · + en, and let 
fn = 0. Consider the set Δ of standard left Λ-modules Δi = Λei/ΛfiΛei for i = 1, . . . , n. 
As mentioned in [1] the module Δi is the largest quotient of Λei such that its composition 
factors are not isomorphic to (Λ/r)ej for j > i, where r is the radical of Λ.

The algebra Λ is standardly stratified if it admits a filtration by left submodules which 
successive quotients belong to Δ, up to isomorphism.

6. Patterns for examples of strongly stratifying Morita contexts

In the following we provide patterns for obtaining families of strongly stratifying 
Morita contexts, through assuming projectivity hypothesis for M and/or N .

Remark 6.1.

• In Example 2.13 from [35, Example 4.4], [5, Example 2.3], neither M is projective 
as a right A-module, nor N is projective as a left A-module.

• In [21] Morita contexts with α = β = 0 and M and N projective bimodules are 
considered. In what follows, in general α �= 0. In Proposition 6.7, N is any bimodule 
and M is a projective bimodule. In Proposition 6.8, M and N are left projective 
modules.

• We emphasize that our results for a strongly stratifying Morita context do not depend 
on the morphism α, while β = 0 since its source vector space vanishes. In other 
words changing α to α′ provides in general different Morita contexts, nevertheless 
the Morita context remains strongly stratifying and the results of this paper still 
apply.

Lemma 6.2. Let Λ be a Morita context 
(

A N
M B

)
α,β

with β = 0. The associativity 

conditions (2.1) are equivalent to

(Imα)N = 0 = M(Imα).
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Proposition 6.3. Let A and B be algebras, a, a′ be idempotents in A and b, b′ be idem-
potents in B. Let

M = Bb⊗ aA and N = Aa′ ⊗ b′B.

Let α : N ⊗B M → A be a morphism of A-bimodules. There is a strongly stratifying 

Morita context 
(
A N
M B

)
α,β

if and only if aAa′ = 0.

Proof. Note that M and N are projective bimodules, so they are left and right projective. 
Thus both TorAn (M, N) = 0 and TorBn (N, M) = 0 are zero for n > 0. Also

M ⊗A N = Bb⊗ aA⊗A Aa′ ⊗ b′B = Bb⊗ aAa′ ⊗ b′B.

If the Morita context is strongly stratifying then M ⊗A N = 0. We infer aAa′ = 0. 
Conversely, if aAa′ = 0, then M ⊗A N = 0. Note that N ⊗B M = Aa′ ⊗ b′Bb ⊗ aA, so 
Imα ⊂ Aa′AaA. Consequently

(Imα)N ⊂ Aa′AaAa′ ⊗ b′B = 0 and M(Imα) ⊂ Bb⊗ aAa′AaA = 0.

The associativity conditions of Lemma 6.2 are satisfied, thus there is a Morita con-
text. �
Remark 6.4. Under the hypothesis of Proposition 6.3

dimkHomA−A(N ⊗B M,A) =dimkHomA−A(Aa′ ⊗ b′Bb⊗ aA,A)

=dimk(a′Aa)dimk(b′Bb).

Hence it is possible to choose α �= 0 if and only if a′Aa �= 0 and b′Bb �= 0.

In the following we provide an example for Proposition 6.3, keeping the same nota-
tions.

Example 6.5. Let A be the algebra of the quiver

a′

u v

a

x

y
z1

z2

with the relation yx = 0. Let B = k, with b = b′ = 1. We have M = aA and N = Aa′. 
Moreover, aAa′ = 0. The projective A-bimodule N ⊗B M is Aa′ ⊗ aA. We have
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HomA−A(Aa′ ⊗ aA,A) = a′Aa = k{z2z1}.

A non-zero α is determined by α(a′ ⊗ a) = z2z1. We denote by m and n the genera-
tors a and a′ of M and N respectively. The strongly stratifying Morita context has a 
presentation given by the quiver

a′

b = b′ u v

a

x

y

n

m
z1

z2

and the relations yx = 0 and nm = z2z1.

Example 6.6. Consider A the algebra of the quiver

a′

u

a

x

y

z

with the relation yx = 0. Let B = k, with b = b′ = 1. We have M = aA and N = Aa′. 
Moreover, aAa′ = 0. The projective A-bimodule N ⊗B M is Aa′ ⊗ aA. We have

HomA−A(Aa′ ⊗ aA,A) = a′Aa = kz.

A non-zero α is determined by α(a′ ⊗ a) = z. We denote m and n the generators of M
and N respectively. The strongly stratifying Morita context has a presentation given by 
the quiver

a′

b = b′ u

a

x

y

z

n

m

and the relations yx = 0 and nm = z. An admissible presentation of this Morita context 
is given by the quiver
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a′

b = b′ u

a

x

y

n

m

and the admissible relation yx = 0.
In other words, this algebra is also a Morita context but relative to an algebra A′

instead of A.

The projectivity requirements for M and N can be relaxed as follows.

Proposition 6.7. Let A and B be algebras with respective idempotents a and b. Let M =
Bb ⊗ aA, and let N be any A − B-bimodule. Let α : N ⊗B M → A be an A-bimodule 

map. There is a strongly stratifying Morita context 
(
A N
M B

)
α,β

if and only if aN = 0

and a(Imα) = 0.

Proof. For n > 0 we have TorAn (M, N) = 0 and TorBn (N, M) = 0. Moreover M ⊗A N =
Bb ⊗ aN , hence M ⊗A N = 0 if and only if aN = 0. Also, N ⊗B M = Nb ⊗ aA, hence 
Imα ⊂ Aa.

If the Morita context is strongly stratifying then M ⊗A N = 0, whence aN = 0. By 
Lemma 6.2, M(Imα) = 0, that is Bb ⊗Aa(Imα) = 0 which is equivalent to a(Imα) = 0.

For the converse, it remains to prove that (Imα)N = 0 in order to satisfy the conditions 
of Lemma 6.2. We have that Imα ⊂ Aa. Hence

ImαN ⊂ AaN = 0. �
Proposition 6.8. Let A and B be algebras with respective idempotents a and b. Let M ′ �= 0
be a right A-module and M = Bb ⊗M ′. Let N ′ �= 0 be a right B-module and N = Aa ⊗N ′. 
Let α : N ⊗B M → A be an A-bimodule map. There is a strongly stratifying Morita 

context 
(
A N
M B

)
α,β

if and only if M ′a = 0 and (Imα)a = 0.

Proof. We have that

• TorAn (M, N) = 0 and TorBn (N, M) = 0 for n > 0,
• M ⊗A N = Bb ⊗M ′a ⊗N ′, whence M ⊗A N = 0 if and only if M ′a = 0,
• N ⊗B M = Aa ⊗N ′b ⊗M ′, whence Imα ⊂ aA.

If the Morita context is strongly stratifying then M ′a = 0. By Lemma 6.2, (Imα)N =
0, that is (Imα)Aa ⊗N ′ = 0 which is equivalent to (Imα)a = 0.
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For the converse, it remains to prove that M(Imα) = 0. We have that (Imα) ⊂ aA. 
Hence

M(Imα) = Bb⊗M ′(Imα) ⊂ Bb⊗M ′aA = 0. �
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