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Homology If Han’s conjecture is true for local algebras and an algebra A
Relative admits a primitive strongly (co-)stratifying chain, then Han’s
Han conjecture holds for A.

Quiver © 2023 Elsevier Inc. All rights reserved.
Recollement

Stratifying
Morita context

1. Introduction

In this paper we consider finite dimensional associative algebras over a field k, which
we call algebras for short. We study Morita contexts in relation with Han’s conjecture,
more details are given below. The intention of this paper is to reduce the analysis of
Han’s conjecture on an algebra to an easier algebra where Hochschild homology is more
manageable.

A Morita context [8,31] is a matrix algebra built on two “diagonal” algebras A and B,
two bimodules M and N and two bimodule maps « and § verifying natural conditions
equivalent to associativity of the product of the matrix algebra - see Definition 2.1.

One of the main results that this paper relies on is that algebras with a distinguished
idempotent are essentially the same that Morita contexts, see for instance [14,24]. For
later use, we start Section 2 by recalling this well known fact in a categorical framework.

Stratifying ideals are defined by E. Cline, B. Parshall and L. Scott in [22] and further
studied in [5,26,27]. We show that for Morita contexts the definition of a stratifying ideal
of an algebra generated by an idempotent translates into the conditions Tor? (M, N) = 0
for n > 0 and f injective. See [36, Proposition 4.1].

Recollements are introduced by A. A. Beilinson, J. Bernstein and P. Deligne in [9].
Let AeA be a stratifying ideal of an algebra A, where e is an idempotent of A. This gives
us a recollement of the unbounded derived category D(A) of complexes of A-modules
relative to the unbounded derived categories D(A/AeA) and D(eAe). See [22,20].

In Section 2 we also introduce strongly stratifying ideals generated by an idempotent.
For Morita contexts, this corresponds to Tor’*(M, N') = 0 for all n, and Tor? (N, M) =0
for n > 0.

The Hochschild homology H H,.(A) of an algebra A (see [28], [40], [41]) is called finite
if HH,(A) = 0 for *+ > N for some N. A main purpose of this paper is to study
under which circumstances the Hochschild homology of a Morita context being finite
implies the Hochschild homology of its diagonal algebra is also finite. Our motivation
is to attack Han’s conjecture [25], which states that if an algebra has finite Hochschild
homology, then it should have finite global dimension. For results in this direction, see for
instance [7,10-13,17,19,21,38,39]. Note that if Han’s conjecture is true, then the following
dichotomy holds: either HH,(A) is infinite or HH,(A) = 0 for % > 0. See [25].

Previous results by L. Angeleri Hiigel, S. Koenig, Q. Liu and D. Yang in [4] provide a
motivation for approaching Han’s conjecture through recollements. Roughly, the finite-
ness of the projective dimension is preserved for an idempotent which gives a stratifying
ideal, through the recollement of the derived category. Moreover B. Keller in [33] and
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Y. Han in [26] showed that in the same situation there is a long exact sequence relating
the Hochschild homologies of the algebras involved.

In Section 3 we adjust and extend the Jacobi-Zariski long nearly exact sequence
obtained in [18]. The additional hypothesis for fitting Theorem 4.2 of [18] is given in
(3.4). This sequence links Hochschild homology of A to the relative one with respect to a
subalgebra introduced by G. Hochschild in [29]. With this adjustement, we confirm our
previous results in [18] and the earlier Jacobi-Zariski long exact sequence of A. Kaygun
in [32].

Let A be an algebra with a distinguished idempotent e satisfying that AeA is a strongly
stratifying ideal, and let f = 1 — e. Using the previously described tools, in Section 4
we obtain the key result of this paper, that is Theorem 4.6: if A has finite Hochschild
homology, then the same holds for eAe and fAf. In Section 5, we prove our main result:
A verifies Han’s conjecture if and only if its subalgebra eAe x fAf does.

We next consider algebras admitting a strongly stratifying chain, that is those algebras
with an ordered complete system of orthogonal idempotents such that the successive
quotients of the induced filtration by ideals are strongly stratifying in the corresponding
algebra. We obtain the following interesting consequence of our key result Theorem 4.6.
Let C be a class of algebras verifying Han’s conjecture which is closed by taking quotients.
If an algebra A admits a strongly stratifying chain {es, ..., e,} such that all the algebras
e;Ae; belong to C, then Han’s conjecture is true for A.

To avoid classes of algebras closed by taking quotients, we filter instead an algebra
A by algebras fAf where the f’s are partial decreasing sums of a complete system of
orthogonal idempotents {ej,...,e,}. We consider strongly co-stratifying chains, that
is the f’s provide ideals which are strongly stratifying in the next algebra. We infer
from Theorem 4.6 another main result: if an algebra A admits a strongly co-stratifying
chain {ej,...,e,} such that all the algebras e;Ae; verify Han’s conjecture, then Han’s
conjecture is true for A.

In particular if Han’s conjecture is true for local algebras and if an algebra admits a
primitive strongly (co-)stratifying chain, then Han’s conjecture is true for this algebra.

Those algebras admitting a strongly stratifying or co-stratifying chain will be com-
pared with standardly stratified algebras (see for instance [1,2,37,42]) in a forthcoming
paper.

In the last section, assuming ad-hoc projectivity conditions on the bimodules of a
Morita context, we give patterns to produce examples.

Acknowledgments: We thank Octavio Mendoza for a comment which led to the definition
of algebras admitting a strongly (co-)stratifying chain and ultimately to the mentioned
result for these algebras.

2. Stratifying and strongly stratifying Morita contexts

Let k be a field. As mentioned, a finite dimensional associative k-algebra is called an
algebra throughout this paper. We first recall the definition of Morita context and show
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that it is the same that an algebra with a distinguished idempotent e. Then we specialize
to the case where the two-sided ideal generated by e is stratifying, in order to obtain a
stratifying Morita context.

As E.L. Green and C. Psaroudakis pointed out in [24], Morita contexts have been
introduced by H. Bass [8] in 1962, and considered by P. M. Cohn [23] in 1996.

Definition 2.1. A Morita context is a matrix algebra (ﬁ[ ‘g) where A and B are
a,p

algebras, M and N are finite dimensional B — A and A — B-bimodules respectively, and
«a and § are A and B-bimodule maps respectively

a:N@gM —Aand : M s N — B
which verify “associativity” conditions
a(n@m)n’ =nB(m@n') and B(m @ n)m' = ma(n @m'). (2.1)

The product of the Morita context is the matrix product using the above, namely

a n a n'\ _ f(ad +a(ne@m’) an' + nb/
m b)\m' V)T ma’ 4+ bm/ Bman')+bV )"
This product is associative if and only if the “associativity” conditions on o and 8 hold.

For completeness, we recall the well known fact that Morita contexts are in bijection
with k-categories with an ordered pair of objects and morphisms are k-vector spaces.
Indeed, starting with a Morita context, the associated category has A (resp. B) as
endomorphism algebra of the first (resp. second) object; morphisms from the first (resp.
second) object to the second (resp. first) object are M (resp. N); finally compositions
of those morphisms are given by « and 3, their “associativity” conditions ensure that
the composition is associative. Conversely, given a k-category with an ordered pair of
objects, the Morita context has the algebras of endomorphisms of the objects on its
diagonal. On the antidiagonal, the bimodules are the morphisms between the objects -
which are indeed bimodules over the previous algebras of endomorphisms. The maps «
and [ are provided by the composition of the category.

Definition 2.2. The objects of the category Morita.Contexts are the Morita contexts. A
morphism of Morita contexts

A N AN
M B a5_> M B, .

)

is a quadruple of maps
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(AL A, BYB ML M NN,

where ¢ and v are algebra maps - they provide M’ and N’ with respective structures of
B— A and A— B-bimodule. Moreover f and g are respectively B— A and A— B-bimodule
maps. In addition, these maps verify the following conditions:

¢ (a(n®m)) =a’ (g9(n) ® f(m)) and ¥ (B(m ®@n)) = ' (f(m) @ g(n)).

The direct sum of the four maps of a morphism is an algebra map.

Note that a morphism between Morita contexts is equivalent to a functor between
the corresponding categories with an ordered pair of objects, which respects the ordered
pairs.

On the other hand the category of k-algebras with an idempotent is as follows.

Definition 2.3. The objects of the category Algebras.ldempotent are pairs (A, e) where A
is a k-algebra and e is a distinguished idempotent of A. A morphism ¢ : (A,e) — (A, €’)
is a morphism of algebras ¢ : A — A’ such that p(e) = €'

The following result is well known.

Theorem 2.4. The categories Morita.Contexts and Algebras.Idempotent are isomorphic.

Proof. Let (]@ g) be a Morita context. The associated object in Algebras.ldem-
a,B

potent is the Morita context with distinguished idempotent (1(‘)4 8) Starting from a

morphism of Morita contexts, that is a quadruple of appropriate maps, their direct sum
clearly preserves the distinguished idempotents.

Conversely, let (A, e) be an object in Algebras.ldempotent and consider the idempotent

Ae eAf . .
f=1—e. Then (e ) is a Morita context where
fAe fAT)

a:eMAfQrar fAe — eAe and B: fAe Repe eAf — fAS

are given by the product of A. Observe that a morphism ¢ : (A, e) — (A’,¢’) also verifies
o(f) = f’, where f' = 1 — ¢/. Therefore, a morphism of algebras with distinguished
idempotents provides a morphism of the corresponding Morita contexts. These functors
are mutual inverses. O

Remark 2.5. The previous Theorem 2.4 generalizes to an algebra with a finite complete
set of orthogonal idempotents (non necessarily primitive), see for instance [16,20].

In 1996 E. Cline, B. Parshall and L. Scott [22] considered a stratifying ideal generated
by an idempotent of an algebra, we next recall its definition.
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Definition 2.6. [22] Let A be an algebra and e € A an idempotent. The ideal AeA is
stratifying if

1. Tor*®(Ae,eA) = 0 for n > 0,
2. The surjection given by the product Ae ®.p. eA — AeA is injective.

Remark 2.7. ([22], [26, Example 1, p.537]) Let A be an algebra and let D(A) denote the
unbounded derived category of complexes of left A-modules. Let e € A be an idempo-
tent such that AeA is a stratifying ideal. Then D(A) admits a recollement relative to
D(A/AeA) and D(eAe), which is interpreted as a short exact sequence of triangulated
categories, as introduced by A. A. Beilinson, J. Bernstein and P. Deligne [9] in 1982.

In 2009 S. Koenig and H. Nagase [34, p. 888] showed that an idempotent e € A gives a
stratifying ideal if and only if the canonical surjection A — A/AeA induces isomorphisms

Ext} /pen(X,Y) = Exti(X,Y)

for all A/AeA-modules X and Y.

It is worth noting that the above is precisely the definition of a strong idempotent
ideal given in 1992 by M. Auslander, M.I. Platzeck and G. Todorov, see [6, p. 669]. They
are not to be confused with “strongly stratifying” ideals that we will consider later.

The following definition will allow to consider stratifying ideals in the framework of
Morita contexts.

Definition 2.8. A Morita context (]\1} g) is stratifying if
a,B

1. Tor2(M,N) =0 for n > 0,
2. [ is injective.

Both stratifying definitions agree through the identification of Theorem 2.4 between
algebras with distinguished idempotents and Morita contexts:

A N

Theorem 2.9. [56, Proposition 4.1] Let A = (M B

) be a Morita context and let e
a,B

be the idempotent <(1) 8) The Morita context is stratifying if and only the ideal AeA

1s stratifying.

Proof. Let A = (ﬁ g) and e = ((1) 8) We have

Ae=AOM eA=AGN
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respectively as right and left A-modules because eAe = A. Therefore
Tor®A¢(Ae, eA) = Tor’ (A, A) & Tor’ (A, N) & Tor (M, A) @& Tor (M, N).
The three first direct summands on the right side of the equality are 0 for n > 0. This

shows the equivalence on the Tor conditions.
Then note that

A N
AeA = (M Imﬂ)'

Moreover the morphism given by the product Ae ®cp.eA — AeA decomposes diagonally
as the direct sum of four morphisms

A4 A— A, AR s N —->N, M®4A— M and M ®4 N — Img.

The first three are clearly isomorphisms, while the last one provides the equivalence on
the injectivity conditions. O

Remark 2.10. From the proof of the previous Theorem 2.9 we have
A/AeA = B/Imp.
We will consider strongly stratifying ideals as follows.

Definition 2.11. Let (A,e) be an algebra with a distinguished idempotent e, and let
f =1—e. The ideal AeA is strongly stratifying if

1. Tor“¢(Ae,eA) =0 for n > 0,
2. fAe ReAe eAf =0,
3. Tor!M(Af, fA) = 0 for n > 0.

Remark 2.12.

e In Proposition 2.17 we will prove that if AeA is strongly stratifying, then AeA is
indeed stratifying.

e The last requirement of Definition 2.11 for AeA to be a strongly stratifying ideal
coincides with the first requirement of the definition for A fA to be a stratifying ideal
(see Definition 2.6).

Example 2.13. We consider the example of [35, Example 4.4] and [5, Example 2.3]. Let
A be the following bound quiver algebra
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/

e1 bl e ba =0, ad =0, dc=0.

T

€3

As proved in [35], the idempotent e = es + e3 provides a stratifying ideal AeA. We assert
that AeA is a strongly stratifying ideal.
e
The algebra A = eAe is the Kronecker algebra buc .

es
Let f = e; = 1 — e. Consider the right A-module M = fAe and the left A-module
N = eAf. Their associated quiver representations are

Mey = k{db} eaN = k{a}
1W0 Oul
Mes = k{d} esN = k{ca}

We assert that M ® 4 N = 0. Indeed,

dbRa=d®ba=d®0=0, db® ca=dbes @ca=db®Reyca=db®0=0
dRa=des®a=d®e3a=d®0=0, d®Rca=dc®a=0®a=0.
Moreover B = fAf = k, thus the last requirement of Definition 2.11 holds. For the

sake of completeness we next check that Tor’ (M, N) = 0 for n > 0, after [35]. Consider
the projective left A-modules

0 k{ei}
w= ][0
k{es} k{b} @ k{c}

and the projective resolution of N
0—-P —FPh—N—=0

where the map P, — P, sends e3 to b. It is straightforward to verify that M ® 4 P, =
k{d®es} and M ®4 Py = k{d®b}. Hence the complex computing Tor2 (M, N) for n > 0
is
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0=>MRAP - M®sFPy—0
which is exact. Note that this gives another proof that M ® 4 N = 0.

Definition 2.14. A Morita context (ﬁ[ g) is strongly stratifying if
a,B

1. Tor(M,N) =0 for n > 0,
2. M®a N =0,
3. Tor2(N, M) = 0 for n > 0.

Remark 2.15. The morphism f of a strongly stratifying Morita context is 5 : 0 — B
which is of course injective. Therefore strongly stratifying Morita contexts are indeed
stratifying.

Proposition 2.16. Let A be an algebra with a distinguished idempotent e, and let f = 1—e.

The associated Morita context (;ﬁi ;1}\{[) is strongly stratifying if and only if the
a,p

ideal AeA is strongly stratifying.

Proof. We have

Tor®¢(Ae, eA) =Tor®*(eAe,eAe) @ Tor(eAe,eAf) @
Tor®™e(fAe,eAe) @ Tor®™(fAe,eAf).

Of course eAe is a projective left eAe-module, it is also projective as a right eAe-module.
Thus for n > 0

Tor?A¢(Ae, eN) = Tor™(fAe, eAf).

Moreover for n = 0 the second condition in both definitions is fAe ®pe eAf = 0.
Analogously, for n > 0 we have

Tor!AM(Af, fA) = Tor!M (eAf, fAe). O

Proposition 2.17. Let A be an algebra and e € A an idempotent. If the ideal AeA is
strongly stratifying, then it is stratifying.

Proof. By Proposition 2.16, the Morita context is strongly stratifying. Thus the Morita
context is stratifying by Remark 2.15. Finally the ideal AeA is stratifying by Theo-
rem 2.9. O
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3. Jacobi-Zariski long nearly exact sequence and bounded extensions of algebras

We begin this section with a brief account of relative Hochschild homology with respect
to a subalgebra, and not with respect to an ideal, as it is often considered. Next, we will
provide the adjusted and extended version of the Jacobi-Zariski long near exact sequence
of in [18], then we confirm the results of [19].

Let C C A be an extension of algebras, that is C' is a subalgebra of A. The relative
projective A-modules are direct summands of A ®¢ V', where V is any left C-module.
Note that if C' = k, the relative projectives are the usual A-projective modules.

Recall that a relative projective resolution of a A-module U requires the existence of
a C-contracting homotopy, by [29, p. 250] it always exits. For a right A-module U’, this
leads to well defined vector spaces Tor™ (U, U).

Let C* be the enveloping algebra C'®; C°P of an algebra, and consider the extension of
algebras C* C A°. The relative Hochschild homology H,(A|C, X) of a A-bimodule X is
defined as Tor®1" (X, A). Note that G. Hochschild considered the extension C®@A% C A®

n [29], but the Tor vector spaces obtained this way are the same, see for instance [17].

If C' = k, relative Hochschild homology is Hochschild homology as defined in [28§],

which is denoted H,. (A, X). If X = A the usual notation is HH,(A).

The setting of [18] is as follows.
Definition 3.1. A sequence of positively graded chain complexes of vector spaces
0—+C. 5D, 5 E,—0 (3.1)

with ¢ injective, k surjective and k¢ = 0 is called short nearly eract. The middle quotient
complex (Kerx/Imu), is called the gap complez.

Remark 3.2. Consider the double complex with columns at p = 0,1 and 2 given by
the short nearly exact sequence (3.1) after the usual change of signs. Recall that the
horizontal maps go from right to left, since the double complex is of homological type.

By filtering the double complex by rows we have a spectral sequence. At page 1 the
only possible non zero column is column 1, which is the gap complex (Kerx/Imu),.
Therefore the spectral sequence converges to H, (Kers/Ime).

Definition 3.3. A long nearly exact sequence is a complex of vector spaces

) I K 4 I
Uy 2>V, > W, > Ut = Vi1 — 1

ending at some n which is exact at W,,, for all m > n and at all U,,. The graded vector
space (KerK/ImlI), is called the gap of the long nearly exact sequence.



130 C. Cibils et al. / Journal of Algebra 639 (2024) 120-149

Next we adjust and we extend Theorem 4.2 of [18]. Part a) is new, while part b)
requires the additional hypothesis (3.4) which is missing in [18]. It is worth noting that
Jonathan Lindell wrote to us raising a question about the results in [18], just after we
realized that Theorem 4.2 of [18] needs this hypothesis.

Theorem 3.4. Consider a short nearly exact sequence of positively graded chain complexes
0—Cy.5 Dy S E,—0. (3.2)

a) If H.(Kerk/lmi) = 0 for x >> 0, then there is long exact sequence

A HLC) D Hy(D) S H(B) S Hy1(C) S
S H(CY) S Hy(D) S HAL(E) (3.3)

ending at some n.
b) Let I and K be the maps induced in homology by v and k respectively. If

dimg (KerK/ImI), = dimi H,.(Kerk/Im¢) for « >> 0 (3.4)
then the sequence (3.3) exists and it is a long nearly exact sequence.

Proof. We now filter the double complex of Remark 3.2 by columns. At page 1 the
vertical differentials are 0. The horizontal ones are

0 Hn(E) E Hy(D,) & Hy(C) <0

At page 2 we have the following:
e column 0 is (CokerK).,
e column 1 is (KerK/ImI).,,

e column 2 is (KerI).,

and all the other columns are zero.
At page 2, the differentials are zero except possibly

(E2 441 = CokerK) <% (E2 = Kerl)
see for instance [40, p. 122]. Hence at page 3 we have that:
e column 0 is (Cokerds),

e column 1 is (KerK/ImI).,,
e column 2 is (Kerds).,
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all the other columns are zero and the differentials are zero. Hence these vector spaces
remain the same in the following pages. Consequently the spectral sequence converges
to

(Cokerda).+1 ® (KerK/ImI), @ (Kerdz)..
Both filtrations converge to the same limit, hence Remark 3.2 gives

dimg (Kerds) . + dimg(KerK/ImI), 4+ dimg(Cokerds )11 =
dimy H. (Kers/Ime). (3.5)

For a) we assume that H,(Kerx/Im¢) = 0 for * >> 0, hence
dimy(Kerds). + dimg(KerK /ImI), 4 dimy(Cokerds) .41 = 0 for x >> 0.

In particular we have (KerK/ImI), = 0 for « >> 0. In other words the sequence is exact
at H,,(D.) for m >> 0.
Moreover, in high enough degrees we have

dimy(Kerds),. = 0 = dimy(Cokerds) .41

which means that ds is invertible in high enough degrees.
Let us consider the canonical maps p : Hy,(E,.) — CokerK and q : Kerl — H,,,_1(C.).
Define

(5:q(d2_1)p.

We do have Kerd = ImK and Imd = Ker].

For b), the hypothesis (3.4) implies that ds is invertible in high enough degrees. The
previous construction provides §, which gives a long nearly exact sequence which gap is
H,.(Kerk/Ime). O

In the following, we confirm the results in [18] after Theorem 3.4.
Let C' C A be an extension of algebras. Let X be a A-bimodule. By [18, Theorem 3.3]
there is a fundamental nearly exact sequence for = > 1

0— C(C,X) 5 C (A, X) S CL(AC, X) = 0 (3.6)

where the positively graded complexes are defined in [18, Section 2]. The homology of
these complexes gives respectively H,.(C, X), H.(A,X) and H,(A|C, X).

We denote by I and K the maps in Hochschild homology induced by ¢ and x respec-
tively. In this context, we reformulate below Theorem 4.4 of [18], which is actually a
particular case of the above Theorem 3.4.
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Theorem 3.5. Let C' C A be an extension of algebras and let X be a A-bimodule. With
the above notations, we have

a) If H.(Kerk/lmu) = 0 for x >> 0, then there is a Jacobi-Zariski sequence
5 I K 5 I
.= Hp(C,X) = Hp(A, X) = Hy(AC,X) = Hypo1 (C,X) — ..

S HL(C,X) S Hy(A,X) S Hy(AC,X) (JZ)

which is long exact and ends for some n.
b) If dimy(KerK/ImI), = dimg H.(Kers/Ime) for x >> 0, then the sequence (JZ) exists
and it is a long nearly exact sequence.

The name Jacobi-Zariski is given after [3, p. 61], [30], see also [18].

Next we approximate the homology of the gap H,.(Kerx/Ime) of the fundamental
sequence (3.6). This way we reconsider Theorem 5.1 of [18].

Theorem 3.6. With the above notations, if TorS (A/C, (A/C)®e™) = 0 for * > 0 and
for all n, then there is a spectral sequence converging to H.(Kerk/Ilmd) in large enough
degrees. Its terms at page 1 are

1 _ Cce ®
Ep, = Tory (X, (A/C)®¢P)  forp,q>0
and 0 anywhere else.

Proof. Theorem 5.1 of [18] intends to approximate the gap of the Jacobi-Zariski sequence
(JZ). The proof there focuses on the homology of the gap complex. This focus is now
our aim.

Thus the proof of [18, p. 1645, Theorem 5.1] is relevant avoiding its first three lines. O

In the following, we confirm that the previous tools provide an alternative proof of
the results of A. Kaygun in [32] as in [18, Theorem 6.2].

Theorem 3.7. Let C C A be an extension of k-algebras such that A/C is a flat C-
bimodule, and let X be a A-bimodule. There is a Jacobi-Zariski long exact sequence

S HL(C X)) S Hp (A, X) B Hy(AC,X) S Hy 1 (CLX) S
5 Hy(C, X) 5 Ho(A, X) 5 H, (A|C, X)
ending at some n.

Proof. A/C is flat as a left and as a right C-module (see for instance the first part of
the proof of [18, Lemma 6.1]), hence Tor® (A/C, (A/C)®<™) = 0 for * > 0 and for all n.
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Now by Theorem 3.6, there is a spectral sequence converging to the homology of the
gap of the fundamental sequence (3.6) in large enough degrees. The first page of this
spectral sequence is

1 _ T.Ct
E, 4 = Tory (X,(A/C)®°F) for p,g>0

and 0 elsewhere. For p > 0 we have that the C®-module (A/C)®¢? is flat, see for instance
[18, Lemma 6.1]. If ¢ > 0, then Torqce (X, (A/C)®cP) = 0. Consequently the first page of
the spectral sequence is 0, so the homology of the gap of the fundamental sequence is 0.
Then by Theorem 3.4 a), there exists a long Jacobi-Zariski exact sequence as stated. O

We recall from [18,19] that an extension of algebras C' C A is left (respectively right)
bounded if

o A/C is projective as a left (respectively right) C-module,
o A/C is tensor nilpotent as a C-bimodule,
o A/C is of finite projective dimension as a C-bimodule.

We confirm now [18, Theorem 6.5] - see also [19, Theorem 2.9], by means of the
previous results. We underline that we consider an extension of algebras C' C A which is
not necessarily split, namely it may not exist a two sided ideal I of A such that A = CP1.

Theorem 3.8. With the above notations, assume that the extension is left or right
bounded. Then there is a Jacobi-Zariski long exact sequence

S Ha(C,X) S Hy (A, X) S Hy(AC,X) S He 1 (C,X) S
% H,(C,X) 5 Ho(A, X) 5 H(AC, X)
ending at some n.

Proof. We have that Tor{(A/C,(A/C)®e™) = 0 for x > 0 and for all n. Hence by
Theorem 3.6 there is a spectral sequence converging to H.(Kerx/Im¢) in large enough
degrees. At page 1 we have E} . = Torqce(X, (A/C)®cP) for p,q > 0 and 0 otherwise. Let
u be the projective dimension of the C-bimodule A/C. Then (A/C)®<? is of projective
dimension at most pu, see [15, Chapter IX, Proposition 2.6].

Let v be such that (A/C)®¢¥ = 0. Note that if p > v or ¢ > pu, then E;q = 0.
Therefore if p + ¢ > v(u + 1), then E;’q = 0. That is the terms of the spectral sequence
vanish at page 1 for high enough total degrees. Hence H,.(Kerx/Imi) = 0 for x >> 0.
Then Theorem 3.4 part a) provides the Jacobi-Zariski long exact sequence. O

A N

Remark 3.9. Consider a Morita context A = ( M B

) and let C = A x B be its
a,p

)

diagonal subalgebra.
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¢ It may happen that (A, ((1) 8)) is strongly stratifying but C' C A is not a bounded

extension. Nevertheless in this case A/C is tensor nilpotent, as we will see in the
next section.

o If the extension C' C A is bounded, then M ®4 N = 0 if and only if the Morita
context is strongly stratifying.

4. Hochschild homology of strongly stratifying Morita contexts

The main purpose of this section is to prove that if a strongly stratifying Morita

context A = ( ]\‘L/‘[ g ) . has finite Hochschild homology, then the same holds for its

diagonal subalgebra C' = A x B and consequently for each diagonal algebra A and B.
We first recall some easy to show facts that we will use.

(F1) A left C-module X is the direct sum of a left A-module ,X and a left B-module
»X, where , X = (1,0)X and ;X = (0,1)X.
Conversely, if , X and , X are left A and B-modules respectively, then X @ , X is
a left C-module. Note that B and A annihilate respectively , X, and ;X = 0.

(F2) In particular a left A-module U becomes a left A x B-module through U ¢ 0, with
BU = 0.

(F3) Let U (resp. V) be a right A (resp. left B)-module, viewed as a right (resp. left)
C-module. We have U ®¢c V = 0.

(F4) Let Y (resp. X) be a right (resp. left) C-module and ¥ =Y, @Y} (resp. X =
X @ pX) be the decomposition as above. We have

Tor? (Y, @ Yo, o X ® 4 X) = Tor? (Y, o X) @ Tor? (Y3, , X).
Indeed a left C-projective resolution of ;X @ , X is given by the direct sum of a
left A-projective resolution of X and a left B-projective resolution of , X . Using
(F3) we infer the result.
(F5) As C = A x B,
C*=A°*x (A® B°®) x (B® A°P) x B°.
Let X be a C-bimodule. We have
X :aXa S2) aXb S2) bXa S bXb
where , Xg, « Xp, pXq and X} are respectively an A-bimodule, an A — B-bimodule,
a B — A-bimodule and a B-bimodule.
(F6) Let Y and X be C-bimodules decomposed as above. After (F4) we have

Torfe(Y7 X) :Torfe(aYa7 aXa) D TorA®B°p(bYa, aXp)D

*
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TorB94% (Y4, 0 Xa) ® Tor?' (45, 5. X3).

(F7) As mentioned the B — A-bimodule M is viewed as a C-bimodule by extending the
actions by zero, that is AM = M B = 0. Analogously, N is a C-bimodule. This
way

A)C=MeN
as C-bimodules.

Next we show that the hypotheses of Theorem 3.6 hold for a strongly stratifying
Morita context.

Proposition 4.1. Let A be a strongly stratifying Morita context (]\il[ ‘g) , and let
a,p

C = A x B as a subalgebra of the Morita context.
We have that Tor (A/C, (A/C)2c™) = 0 for « > 0 and for all n.

Proof. As noted in (F7), A/C = M @& N as C-bimodules. To compute
(M D N)®C2

note that M @ M = 0 = N ®c N by (F3). Analogously, N ®c M = N ®p M and
M ®c N = M ®4 N; the latter is 0 since the Morita context is strongly stratifying.
Finally

(M @ N)®? = N®p M. (4.1)
Moreover
(M@ N)®P*=M®s NogM=0. (4.2)

For n > 3, we infer (M @& N)®c" = 0 and Tor (A/C, (A/C)®c™) = 0.
For n = 2 we have

TorY (M @ N, (M ® N)®¢?) = TorY (M @& N, N @5 M)
= Tor®(M,N ®@p M)
= Tor? (M @4 N, M)
=0

The equality Z is ensured by [15, Theorem 2.8, p.167] in case the following takes place

Torf(M,N) =0= Torf(N,M) for n > 0.
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Indeed, this holds since the Morita context is strongly stratifying.
For n =1 we have

TorC(A/C, (A/C)) = TorY(M @ N,M & N)
= Torf(M, N) EBTor*B(N,M)

according to (F4). Now Tor (M, N) = 0 for * > 0 since the Morita context is stratifying.
Moreover Tor? (N, M) =0 for * > 0 since it is strongly stratifying. O

We will now show that the terms at the first page of the spectral sequence of Theo-
rem 3.6 for X = A vanish.

Lemma 4.2. Let A = <]\1} g) be a strongly stratifying Morita context. For n > 0
o,

TorA®5" (M, N) = 0 = TorZ®4™ (N, M).

Proof. We make use of the “associativity formula” of H. Cartan and S. Eilenberg [15, p.
347, (5a)], namely there is a spectral sequence
n

Hy(B, Tor (M, N)) = Tori®5" (M, N).

Since the Morita context is strongly stratifying, Tor;x (M,N) = 0 for p > 0. Hence
Hq(B,Tor;;l(M7 N)) =0 for all p and ¢, and Torﬁ®Bop(M, N) =0 for all n.

Given an algebra D, a right D-module X and a left D-module Y, it is well known
that for all n

Tor?(X,Y) = Torfop(Y, X).
Hence
Tor?®4™(N, M) = Tor?®5”"(M,N) = 0. O

Proposition 4.3. Let A be a strongly stratifying Morita context (]\1:1[ g) , and let
a,B

)

C = A x B. We have

Torqce(A, (A/C)®CP) =0 for p,q > 0.
Proof. By (4.2) we have (A/C)®cP = 0 for p > 3, thus Torqce(A, (A/C)®cP) = 0 for
p=3.

The decomposition of (F5) of A as a C-bimodule is

A=ASNO Mo B.
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For p = 1, according to (F6) we have
ToC' (A& N & Mo B, Mo N) = TorP®4" (N, M) & Tor*®5” (M, N),

Both summands vanish by the previous Lemma 4.2.
For p = 2, we know by (4.1) that (M & N)®¢? = N @5 M. Hence

Tor{ (A® N @ M @ B, (M@ N)®?) = Torl (A, N @5 M).

We show next that the hypotheses of [15, p.347 (4a)] hold: firstly note that Tor’ (4, N) =
0 for n > 0. Secondly, since the Morita context is strongly stratifying, Tor” (N, M) = 0
for n > 0. Therefore there is an isomorphism

Tor (A, N @p M) ~ Tor}"®P (A4 N, M).
The latter is Torj;‘op@B (N, M), which is zero by the previous Lemma 4.2. O

Theorem 4.4. Let A be an algebra with a distinguished idempotent e, such that Ael is a
strongly stratifying ideal and let C = eAe x fAf, where f =1 —e.
There exists a Jacobi-Zariski long exact sequence

S HL(CA) D Hy (AN S Hy(AC,A) S Hy 1 (CLA) S
% Ho(C,A) 5 Hy(AA) 5 H,(AC,A)

ending at some n.

Proof. Consider the corresponding strongly stratifying Morita context

A= (]\/} Jg) where A = eAe and B = fAf, thus C = A x B. We will show
a,B

that we can use part a) of Theorem 3.5, that is we assert H,(Kerx/Im:) = 0 for

x >> 0. Indeed, the spectral sequence of Theorem 3.6 is available if we prove that

Tor?(A/C, (A/C)®c™) = 0 for * > 0 and for all n. This follows from Proposition 4.1.
Moreover the first page of this spectral sequence is

1 ce
E, = Tory (A, (A/C)®°P) for p,q >0

and 0 anywhere else, see Theorem 3.6 for X = A.
This first page vanishes, due to Proposition 4.3. We have proved that

H,(Kerk/Imi) =0 for * >> 0

and of Theorem 3.5 a) provides the existence of the Jacobi-Zariski long exact se-
quence. O
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Lemma 4.5. In the situation of Theorem /./, let X be a A-bimodule. We have that
H,,(A|C,X) =0 form > 3.

Proof. By [18, Corollary 2.4] we have that H,,(A|C, X) is the homology of the following
chain complex

o= X ®ce (AJC)PC™ — o 5 X ®@ce AJC — X — 0

where X¢ = A®¢e C = X/{cx — xc) = Ho(C, X). On the other hand, (4.2) ensures that
(A/C)®c™ =0 form >3. O

Theorem 4.6. Let A be an algebra with a distinguished idempotent e such that AeA is a
strongly stratifying ideal, and let f = 1 —e. If HH.(A) is finite, then HH.(eAe) and
HH,(fAf) are finite.

Proof. Consider the corresponding strongly stratifying Morita context

A= (]AW g) where A = eAe and B = fAf and C = A x B. The Lemma 4.5 and
o,f

the Jacobi-Zariski long exact sequence of Theorem 4.4 provide H,(C,A) = 0 for x >> 0.
Moreover

TorS (C,A) = Tor (A@ B, A@ N & M & B).
By (F6) the latter is
Tord"(A, A) @ Tor® (B, B) = HH,(A) & HH,(B).
We infer that HH,(A) and HH,(B) are finite. O
5. Han’s conjecture

We recall Han’s conjecture [25] for an algebra A: if HH,(A) is finite, then A has finite
global dimension.

Theorem 5.1. Let A be an algebra with a distinguished idempotent e such that AeA is a
strongly stratifying ideal, and let f = 1 — e. The algebra A verifies Han’s conjecture if
and only if eAe X fAf does.

Proof. Consider the corresponding strongly stratifying Morita context

AN
A(M B)aﬁ’

)
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where A = eAe and B = fAf. Assume that A x B satisfies Han’s conjecture and let
us prove that this is also the case for A. So suppose HH,(A) is finite. By Theorem 4.6,
we have that HH,(A) and HH,(B) are finite. It is well known that HH.(A x B) =
HH,.(A)® HH,.(B), then H.(A x B) is finite and thus A x B has finite global dimension.
Hence A and B have finite global dimension.

Note that by Remark 2.15 we have 8 : 0 — B, then Img8 = 0 and thus B/Img = B.
Therefore A/AeA = B, see Remark 2.10. Since the ideal AeA is strongly stratifying, it
is stratifying. Hence there is a recollement of D(A) relative to D(A/AeA) and D(eAe),
that is relative to D(B) and D(A).

According to L. Angeleri Hiigel, S. Koenig, Q. Liu and D. Yang in [4, Theorem I,
p. 17] (see also [26, Proposition 4, p. 541]), since A and B have finite global dimension,
A has finite global dimension.

Next we show the other implication. Assume that A satisfies Han’s conjecture, our
aim is to show that A x B also does. Let’s suppose that HH,(A x B) is finite. Since
HH,.(Ax B)=HH,(A) ® HH,.(B) we infer that HH,(A) and HH,(B) are finite.

We have that AeA is a strongly stratifying ideal, hence it is stratifying and there is
a recollement. According to [26, Corollary 2, p. 543] after B. Keller [33], there is a long
exact sequence in Hochschild homology

<o — HHp41(A/AeA) — HH,(eAe) - HH,(A) — HH,(A/AeA) — - -
that is for the Morita context
-+~ HH,+1(B) - HH,(A) - HH,(A\) - HH,(B) — - -+

We infer that HH,(A) is finite. Since A verifies Han’s conjecture, A is of finite global
dimension.

Using again the above cited result in [4,26] we infer that A and B, and thus A x B,
have finite global dimension. 0O

Theorem 5.1 will also be useful for considering algebras filtered by ideals which suc-
cessive quotients provide strongly stratifying ideals. The following result shows that
Definition 5.3 below makes sense.

Lemma 5.2. Let A be an algebra and let u,v € A be orthogonal idempotents. We have

AMut+v)A A A
A AudAuh

where U is the class of v in AJ/AuA.
Proof. First note that since u and v are orthogonal idempotents we have

A(u+v)A = Aul + AvA,
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consequently

Alu+v)A  Aul +AvA AvA
AuA Aul ~ AuA N AvA

Next consider the composition AvA — A — A/AuA. Tts image is AAW@AAW and its kernel
is A uANAvA. O

Definition 5.3. Let A be an algebra. A strongly stratifying n-chain is an ordered complete
system of orthogonal idempotents {eq,...,e,} of A such that the filtration by ideals

OCAelACA(€1+€2)AC"'CA(€1+€2+'~'+€n_1)ACA

verifies that for 1 < i < n the quotient A(e; +---+e;))A/Aler +---+¢e;—1)A is a
strongly stratifying ideal of A/A(e; + -+ e;—1)A.

Remark 5.4.

e The bound quiver algebra A of Example 2.13

er b||e ba =0, ad =0, dc = 0.

€3

admits a strongly stratifying 2-chain {es + e3,e1}.
e For1<i<mn,let A;=A/A(e1 + -+ e;)A. According to Lemma 5.2

A(61 + -+ GZ)A
A(61 + -+ 62‘,1)A

=N
where €; denotes the class of e; in A;_1.

Definition 5.5. Let C be a class of algebras. A C-strongly stratifying n-chain of an algebra
A is a strongly stratifying n-chain {ej,...,e,} of A such that for 1 <i < n the algebra
e;Ae; belongs to C.

We will need the following lemma.

Lemma 5.6. Let C be a class of algebras which is closed by taking quotients. Let A be an
algebra admitting a C-strongly stratifying n-chain {e1,...,e,} for n > 1. The algebra
A/Aei A admits a C-strongly stratifying n — 1-chain {€z,e3,...,€,}.
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Proof. We have the following quotient filtration of A/AejA

Aler +ex)A - Ale; +eg+ - +ep1)A c A .
AelA A61A A€1A

0cC

Using Lemma 5.2, the ideals of this filtration are as follows

Aler +---4e)A Alea + -+ e)A A G+ t2) A
A€1A B AelAﬂA(eg + -+ el)A - AelA 2 ! AelA

Hence the quotient filtration is indeed the one corresponding to the complete system of
orthogonal idempotents {€3,...,€} of A/Aej A, namely

0C Le_L C--C L(e_+ Jre_)L C A
AerA 2 Ae A Aer A2 "AetA T AegA

To verify that the successive quotients of this filtration of A/Aej A are strongly stratifying
in the corresponding quotient of A/Ae; A, note that
A(€1+"'+61)A/A61A A(€1++€1)A

A(61 —+ o+ 61_1)A/A61A o A(61 —+ o+ e,;_l)A

and

A/AerA - A
A(61 + -+ ei_l)A/AelA o A(el + -+ ei—l)A

Finally observe that

= A = = eiAei
lAelA e AelA N eiAei'

Since e; Ae; is in C which is closed by taking quotients, we infer that e_iﬁe_i also belongs
to C. This way {e3,...,€,} is a C-strongly stratifying n — 1-chain of A/Ae;A. O

Theorem 5.7. Let C be a class of algebras which is closed by taking quotients, and assume
that Han’s conjecture holds for all algebras in C. Let A be an algebra which admits a C-
strongly stratifying n-chain for some n > 0. Then A verifies Han’s conjecture.

Proof. By induction, let A be an algebra admitting a C-strongly stratifying n-chain
{e1,...,en}. I n =1, then e; = 1 and the algebra A = 1Al is in C. By hypothesis, A
verifies Han’s conjecture.

Let n» > 1 and consider the algebra A/Ae;A which admits a C-strongly stratifying
n — l-chain by Lemma 5.6. Hence Han’s conjecture holds for it.

The ideal Aej A is strongly stratifying in A. By Theorem 5.1, Han’s conjecture holds
for A if and only if it holds for e;Aey x (1 —eq)A(1—ey). To verify the latter, suppose that
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HH,(e1Ae; x (1—e1)A(1—eyq)) is finite. So HH,(e1Aeq) is finite. But e; Ae; belongs to C,
thus by hypothesis it verifies Han’s conjecture. Then e; Ae; has finite global dimension.

On the other hand we also have that HH,((1 — e1)A(1 — e;)) is finite. Consider the
Morita context given by e;. By Remark 2.10

A (Q-e)A(l—e)

AelA B Imﬁ

Since Aej A is strongly stratifying, we have that 5 = 0. Consequently
A/A@lA = (1 — 61)A(1 — 61)

and HH,(A/Ae1A) is finite. Han’s conjecture holds for A/Ae; A by the inductive hypoth-
esis - see above. Then A/Ae; A = (1 — e;)A(1 — e;) has finite global dimension.

We have established before that e;Ae; has finite global dimension. We infer that
e1Ae; x (1 —e1)A(1 — e;) has finite global dimension, that is this algebra verifies Han’s
conjecture as needed. O

Corollary 5.8. Assume that Han’s conjecture holds for local algebras. If an algebra A
admits a strongly stratifying chain {ei,...,e,} with e; primitive for all i, then Han’s
conjecture is true for A.

In order to avoid classes of algebras closed by taking quotients, instead of filtering by
ideals of an algebra A, below we filter A by algebras fAf, where f is a partial sum of a
complete system of orthogonal idempotents.

The following lemma can be easily proved.

Lemma 5.9. Let A be an algebra with an ordered complete set of orthogonal idempotents
{e1,...,en}. Consider the following idempotents

f0:€1+°"+6n, f1:62+"‘+6n, ,fi:ei+1+"’+en7 ey fn,lzen.
For 0 <i<n—1, consider the algebra f;Af; with unit f;.

o Forj > i we have ej = fie; = e;f; = fie;fi, therefore e; € fiAf; and e;(fiAfi)e; =
ejAej,

o fiMf; has a complete set of orthogonal idempotents {e;+1,... e} and fiv1 = fi —
€it+1,

o For j >i we have fif; = f;fi = f;, therefore fiAf; = fi(fil\fi) [,

0 C fooiAfoor C ... C fiMfi C ... C fiMfi C foAfo =A.

We keep the notations of Lemma 5.9 in the sequel.
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Definition 5.10. Let A be an algebra. A strongly co-stratifying n-chain of A is an ordered
complete set of orthogonal idempotents {ey,...,e,} C A such that the ideals provided
by the following idempotents

el fa€ fihfr, oo, firn € filMfi, -o s fam1 € fa—2Afn—2
are strongly stratifying in their respective algebras.

Example 5.11. The bound quiver algebra A of Example 2.13

el b c ba =0, ad =0, dc =0.

es
admits a strongly co-stratifying 3-chain {ej, es, e3}. Indeed, consider the filtration
0 C esAes C (ea+e3)A(ea+e3) C A.

We know that the idempotent es + e provides a strongly stratifying ideal in A. Moreover

es gives trivially a strongly stratifying ideal of the Kronecker algebra (e3 + e3)A(ea + e3)
k k@k)

since the corresponding Morita context is (O i

Definition 5.12. An H-strongly co-stratifying n-chain of A is a strongly co-stratifying
n-chain {ey,...,e,} such that e;Ae; verifies Han’s conjecture for all i.

Theorem 5.13. Let A be an algebra which admits an H-strongly co-stratifying n-chain.
Then A wverifies Han’s conjecture.

Proof. By induction, let A be an algebra which admits an H-strongly co-stratifying
n-chain {ey,...,e,}. If n =1, then e; =1 and A = ey Ae; verifies Han’s conjecture.

For n > 1, recall that fi =ea+---+ e, =1—e1. Since Af1A is a strongly stratifying
ideal of A, by Theorem 5.1 we have that Han’s conjecture holds for A if and only if
it holds for fiAfi x ejAe;. To verify the latter, suppose that HH,(f1Afi x e1Aeqp) is
finite, then HH,(f1Af1) and HH,(ejAey) are finite. We have that ejAe; verifies Han’s
conjecture thus e; Ae; is of finite global dimension.

On the other hand we assert that fiAf; admits a H-strongly co-stratifying (n —
1)-chain {eg,...,e,}. First by Lemma 5.9, for j > 2 we have f;(fiAfi)f; = fiAf;.
Thus the ideal provided by f;41 in f;(fiAf1)f; is strongly stratifying since {eq,...,e,}
is a strongly co-stratifying n-chain of A. Second, by Lemma 5.9 for j > 2, we have
ej(fiAf1)e; = ejAe; and the latter verifies Han’s conjecture.
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Therefore the inductive hypothesis ensures that fiA f; verifies Han’s conjecture, hence
f1Af1 is of finite global dimension. We infer that fiAf; x e;Ae; is of finite global dimen-
sion, that is Han’s conjecture is true for fiAf; X ejAe;. O

Corollary 5.14. Assume that Han’s conjecture holds for local algebras. If an algebra A
admits a co-stratifying chain consisting of primitive idempotents, then Han’s conjecture
is true for A.

Remark 5.15. As quoted in the Introduction, a comparison between algebras admitting a
strongly stratifying or co-stratifying chain with algebras which are standardly stratified
will be considered in a forthcoming paper. For the convenience of the reader, we recall
the definition of standardly stratified algebras (see for instance [1,2,37,42]).

With the same notations as in Lemma 5.9, recall that f; = e;41 + -+ + e,, and let
frn = 0. Consider the set A of standard left A-modules A; = Ae;/AfiAe; fori=1,... ,n.
As mentioned in [1] the module A; is the largest quotient of Ae; such that its composition
factors are not isomorphic to (A/r)e; for j > ¢, where r is the radical of A.

The algebra A is standardly stratified if it admits a filtration by left submodules which
successive quotients belong to A, up to isomorphism.

6. Patterns for examples of strongly stratifying Morita contexts

In the following we provide patterns for obtaining families of strongly stratifying
Morita contexts, through assuming projectivity hypothesis for M and/or N.

Remark 6.1.

o In Example 2.13 from [35, Example 4.4], [5, Example 2.3], neither M is projective
as a right A-module, nor N is projective as a left A-module.

o In [21] Morita contexts with & = 8 = 0 and M and N projective bimodules are
considered. In what follows, in general a # 0. In Proposition 6.7, N is any bimodule
and M is a projective bimodule. In Proposition 6.8, M and N are left projective
modules.

o We emphasize that our results for a strongly stratifying Morita context do not depend
on the morphism «, while § = 0 since its source vector space vanishes. In other
words changing « to o’ provides in general different Morita contexts, nevertheless
the Morita context remains strongly stratifying and the results of this paper still
apply.

Lemma 6.2. Let A be a Morita context <ﬁ[ g) with 5 = 0. The associativity
a,B

)

conditions (2.1) are equivalent to

(Ima)N =0 = M(Ima).
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Proposition 6.3. Let A and B be algebras, a, a’ be idempotents in A and b, b’ be idem-
potents in B. Let

M=Bb®aA and N = Ad @ VB

Let o : N ®g M — A be a morphism of A-bimodules. There is a strongly stratifying

Morita context Al if and only if aAa’ = 0.
M B) 5

Proof. Note that M and N are projective bimodules, so they are left and right projective.
Thus both Tor (M, N) = 0 and Tor? (N, M) = 0 are zero for n > 0. Also

M@sN=Bb®aA®4Ad VB =Bb® aldd @ V'B
If the Morita context is strongly stratifying then M ®4 N = 0. We infer ada’ = 0.
Conversely, if aAa’ = 0, then M ®4 N = 0. Note that N @ M = Ad’ ® b’ Bb® aA, so
Ima C Aa’ AaA. Consequently

(Ima)N C Ad’AaAd’ @ b'B = 0 and M (Ima) C Bb® aAad’AaA = 0.

The associativity conditions of Lemma 6.2 are satisfied, thus there is a Morita con-
text. O

Remark 6.4. Under the hypothesis of Proposition 6.3

dimgyHoma_4(N ®p M, A) =dimyHom4_4(Ad’ @ b’ Bb® aA, A)
:dimk(a’Aa)dimk(b’Bb).

Hence it is possible to choose « # 0 if and only if a’ Aa # 0 and ' Bb # 0.

In the following we provide an example for Proposition 6.3, keeping the same nota-
tions.

Example 6.5. Let A be the algebra of the quiver

Q\

with the relation yz = 0. Let B = k, with b =8 = 1. We have M = aA and N = Ad’.
Moreover, aAa’ = 0. The projective A-bimodule N ® g M is Aa’ ® aA. We have

@H@‘)
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Homa_4(Ad' ® aA, A) = o’ Aa = k{z221}.
A non-zero « is determined by a(a’ ® a) = z22;. We denote by m and n the genera-

tors @ and a’ of M and N respectively. The strongly stratifying Morita context has a
presentation given by the quiver

and the relations yx = 0 and nm = 292;.

Example 6.6. Consider A the algebra of the quiver

with the relation yz = 0. Let B = k, with b =0 = 1. We have M = aA and N = Ad’.
Moreover, aAa’ = 0. The projective A-bimodule N ® g M is Aa’ ® aA. We have

Homy_ 4(Ad' ® aA, A) = a’ Aa = kz.
A non-zero « is determined by a(a’ ® a) = z. We denote m and n the generators of M

and N respectively. The strongly stratifying Morita context has a presentation given by
the quiver

and the relations yx = 0 and nm = z. An admissible presentation of this Morita context
is given by the quiver
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and the admissible relation yz = 0.
In other words, this algebra is also a Morita context but relative to an algebra A’
instead of A.

The projectivity requirements for M and N can be relaxed as follows.

Proposition 6.7. Let A and B be algebras with respective idempotents a and b. Let M =

Bb® aA, and let N be any A — B-bimodule. Let o : N @ g M — A be an A-bimodule

map. There is a strongly stratifying Morita context (1\/{1[ ‘g) if and only if aN =0
a,p

and a(lma) = 0.

Proof. For n > 0 we have Tor’}(M, N) = 0 and Tor? (N, M) = 0. Moreover M © 4 N =
Bb® aN, hence M ®4 N = 0 if and only if aN = 0. Also, N g M = Nb® aA, hence
Ima C Aa.
If the Morita context is strongly stratifying then M ® 4 N = 0, whence aN = 0. By
Lemma 6.2, M (Ima) = 0, that is Bb ® Aa(lma) = 0 which is equivalent to a(lma) = 0.
For the converse, it remains to prove that (Ima) N = 0 in order to satisfy the conditions
of Lemma 6.2. We have that Ima C Aa. Hence

ImaN C AaN =0. O

Proposition 6.8. Let A and B be algebras with respective idempotents a and b. Let M’ # 0
be a Tight A-module and M = Bb@M'. Let N’ # 0 be a right B-module and N = Aa®@N'.
Let o : N ®@g M — A be an A-bimodule map. There is a strongly stratifying Morita

context AN if and only if M'a =0 and (Ima)a = 0.
M B p
Proof. We have that

e Tor (M, N) =0 and Tor?(N, M) =0 for n > 0,
e M®, N=Bb® M'a® N’', whence M ® 4 N = 0 if and only if M'a =0,
e N®gM = Aa® N'b® M’, whence Ima C aA.

If the Morita context is strongly stratifying then M’a = 0. By Lemma 6.2, (Ima)N =
0, that is (Ima)Aa ® N’ = 0 which is equivalent to (Ima)a = 0.
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For the converse, it remains to prove that M (Ima) = 0. We have that (Ima) C aA.
Hence

M(Ima) = Bb® M'(Ima) C Bb® M'aA=0. O
Data availability
No data was used for the research described in the article.
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